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1.0 INTRODUCTION

1.1 SignificMae of the Problem

Advanced, high performance composite materials arm really material systems. The consti-

tucnt materials interact in such a way that their collective response is more than the linear sum of

the response of the constituents. This simple reality provides the technical community with a

remarkable opportunity to create composite material systems which are uniquely suited to per-

I form specific engineering tasks. At the same time, this systems aspect of composite materials is

a very great challenge to the research community. It introduces complexity, nonlinearity, and

I-- scaling problems (to name a few) which require new developments to represent geometry and

material behavior, from the standpoint of mechanics.

This challenge is even more formidable when one attempts to find modeling approaches to

the representation of the long-term response of composite systems to cyclic mechanical. chemi-

cal, and thermal loading. The systems aspect in that context creates the need to represent defor-

mation, degradation, aging, and other processes. These process are "multidisciplinary" in every

sense, and the mechanics, chemistry, thermodynamics, and physics of their activity is generally

coupled.

The "performance" of a material system is not a material property like stiffness. It depends

I on the manner in which the environment of mechanical, chemical, and thermal loads are applied,

and on the history of that application. The physical events that determine performance are often

a "process," with rates and interactions that must be considered and characterized in order to

S properly describe and anticipate the consequences.

3 Recent advances in the technologies of manufacturing and materials have enhanced the

current application of composite materials from being used as secondary structural elements to

I becoming primary load-carrying structural components. Consequently thicker and thicker com-
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posites structures are being made to carry higher loads. Due to the inherent inhomogeneity and

anisotropy of the materials, analysis of these composite structures imposes new challenges to

engineers. A widespread and efficient application of composite materials requires detailed and

reliable knowledge of their physical properties and, in turn, of their behavior under applied

loads. There are a number of important technical problems associated with the mechanics of

composite materials. One such problem is the effect of discontinuities (holes and notches) on

the strength of composite laminates. This issue is critical for the determination of the load bear-

ing capacity of composite laminates; which is directly applicable to the design of composite

panels and the location of fastener holes. Indeed, the manufacture and repair of advanced com-

posite structures have serious problems connected with the placement of fastener holes. This is

especially relevant to composite panel repair, both in the field and at the repair facility. At the

present time all depots are confronted with these problems. The lack of appropriate data has

resulted in new and in-service designs which are often unnecessarily conservative and expensive

(both in cost and turn-around-time). Another related problem is the issue of interlaminar

response of composite materials which is directly related to delamination and edge effects in

composites. In recent time, delamination has become the most feared failure mode in laminated

composite structures. It can exhibit unstable crack growth, and while delamination failure itself

is not usually a catastrophic event, it can perpetrate such a condition due to its weakening

influence on a component in its resistance to subsequent failure modes. Study of delamination is

one of the prominent topics in composite mechanics research. Another issue in the engineering

application of composite materials is the modeling and study of structures with curved

geometries. Because of the complex nature of these structures, present computational capabili-

ties are far behind the engineering developments and only very limited simulations of these sys-

tems are feasible presently. All the foregoing problems share one common deficiency, namely,

the lack of an adequate and sound theory predicated upon principles of continuum mechanics

that could be implemented through an accurate and efficient numerical scheme. Here in Berke-

ley Applied Science and Engineering Inc. (BASE) we started this research to address these very
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basic issues associated with application of composites. In particular the following objectives

were followed during the course of this research.

1. Development of a thermomehanical theory for composite laminates that has a continuum

character. The theory should be able to account for the three-dimensional responses of

laminated plates and shells. The theory should also account for effects of micro-structure,

anisotropy, and geometric nonlinearities.

2. Formulation of the theory in the context of finite element and numerical implementation of

the theory through computationally efficient algorithms suitable for composite applications.

3. Verification of the theory through analysis of a series of benchmark problems.

1.2 Theories of Laminated Composite Plates and Shells

There has been an increasing amount of research activity pertaining to the mechanics of

composite laminates and multilayered plate and shell theories. The scope of multilayered shell

theories encompasses all the methods used in conjunction with two-dimensional treatments of

composite shells. These methods generally lead to a system of partial differential equations in

two independent spatial variables, along with a set of boundary/initial conditions compatible

with them. As in the case of single-layer isotropic shells, all the different approaches for con-

structing multilayered shell theories can be viewed as either a single approximation or succes-

sive approximations of three-dimensional elasticity models. For a review and a complete list of

references, the reader is referred to Noor, A. K., and Burton, W. S. [19901. The following four

general approaches for constructing two-dimensional theories for multilayered shells were

identified in this work:

1. method of hypothesis;
2. method of expansion;
3. asymptotic integration technique;
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4. iterative methods and methods of successive corrections.

I The Jirst approach is an extension of the Kirchhoff-Love approach and is based on intro-

I ducing a priori plausible kinematic or static assumptions regazring the variation of displace-

ments, strains and/or stresses in the thickness direction. The simples of these hypotheses is the

I linear variation of the displacement components used in conjunction with first-order shear defor-

mation theories. Although the method of hypotheses has the advantages of physical clarity and

I simplicity of applications, it has the drawback of not providing an estima of the ermro in the

response predictions.

The second approach was initiated by Cauchy and Poisson around 1828, and is based on a

series expansion, in terms of the thickness coordinate for displacement and/or stresses. For iso-

tropic and anisotropic plates and shells, power series, Legendre polynomials, and trigonometric

functions have been employed. The second approach also includes the method of initial func-

tions in which the displacements and stresses are expanded in a Taylor series in the thickness

coordinate. The relations between the higher-order derivatives of each of the displacements and

stresses and their lower-order derivatives are obtained by successive differentiation of the three-

dimensional elasticity relations.

j In the third approach, appropriate length scales are introduced in the three-dimensional

elasticity equations for the different response quantities, followed by parametric (asymptotic)

expansions of these quantities in power series in terms of a small thickness parameter. The

three-dimensional elasticity equations are thereby reduced to recursive sets of two-dimensional

equations, governing the interior and edge zone responses of the shell. The edge zone (or boun-

I dary layer) is produced by self-equilibrated (in the thickness direction) boundary stresses. The

lowest-order system of two-dimensional equations, depending on the choice of the length scales,

I corresponds to the thin-shell approximation. The higher-order systems introduce thickness

correction effects in a systematic and consistent manner. This approach was first applied to iso-

I tropic shells by Reissner [1960]. Later, it was extended to anisotropic shells.
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The fourth approach includes various iterative approximations of the three-dimensional

elasticity equations, er- prledictor-corrector procedures based on a single or successive correc-

tions of the two-dimensional equations.

The following comments on the different approaches of constructing two-dimensional shell

theories and the boundary conditions to be used in conjunction with these theories are in order.

I1. The state of stress in the shell can be decomposed into an internal state of stress and a

3 boundary layer. The first is generated by external surface forces, and by boundary and

reactive stresses, which are not self-equilibrated. The boundary layer is generated by self-

i equilibrated (in the thickness direction) boundary stresses. The method of hypotheses and

the method of expansion can describe well the internal state of stress, but are not suited for

I describing the boundary layer (because of the complicated nature of the displacement

and/or stress distribution through the thickness). By contrast, the asymptotic integration

technique is well suited for describing both the internal state of stress and the boundary

layer of the shell.

I 2. If the method of expansion is contrasted with the asymptotic integration approach, the fol-

lowing two major differences can be identified:

(a) No a priori assumptions are made regarding the relative magnitudes of the different stress

components in the method of expansion. By contrast, in the asymptotic integration

approach, such assumptions have to be made either explicitly or implicitly.

(b) Whereas the method of expansion leads to a set of simultaneous equations in all the param-

eters, the asymptotic integration technique leads to recursive sets of equadons for both the

interior and the edge zone (or boundary layer) of the shell. The lowest-order equations for

the interior of the shell correspond to the classical Kirchhoff-Love theory.
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3. The aforementioned four approaches are not mutually exclusive. Some of the theories

developed can be classified in more than one category. Also, hybrid methods, combining

more than one approach, have been proposed. Examples of these hybrid methods are: (a)

the use of a three-dimensional model for the core and a two-dimensional model for the fac-

ings of a sandwich shell, and (b) the two-step approach based on using a two-dimensional

shell theory to evaluate the in-plane stresses and then applying the three-dimensional

equilibrium equations to evaluate the transverse shear and normal stresses in laminated

composite shells.

4. Although most of the theories developed for laminated composite shells replace the actual

shell (or each of its layers) by a smeared ordinary continuum, some microstructural and

generalized continuum shell theories have been proposed. In the first class (microstructural

theories), the shell is considered to consist of alternating layers of relatively rigid material

(with properties representative of fibers) interspersed between flexible layers with proper-

ties typical of the matrix material.

5. The derivation of the correct boundary conditions for a particular shear deformation shell

theory from prescribed data seems to be important, even for thin shells. Some recent work

on isotropic plates and shells indicated that the use of approximate boundary conditions in

conjunction with higher-order shell theories can lead to significant errors in the predictions

of the shell theory. Therefore, Saint Venant's principle needs to be re-examined when

applied, in conjunction with higher-order shear deformation theories, to shell problems.

Extensive research effort has been devoted to the classical laminated theory (C.L.T.) in the

past and a huge amount of literature is available on this topic. The classical laminate theory is a

direct extension of classical plate theory in which the well known Kirchhoff-Love kinematic

hypothesis is enforced. This theory is adequate when the thickness (to side or radius ratio) is

small and anisotropy is not pronounced. The range of applicability of the C.L.T. solution has

been well established for laminated flat plates. It indicates that a theory which accounts for the
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transverse shear deformation effects would be adequate to predict only the gross behavior of the

I laminate.

IIn order tovrmethe deficiencies in CJTrefined laminate theories have been po

posed. These are single layer theories in which the transverse shear stresses are taken into

account. They provide improved global response estimates for deflections, vibration frequencies

U and buckling loads of moderately thick composites when compared to the classical laminate

theory. A Mindlin type first-order transverse shear deformation theory (SD.T.) was first

I developed by Whitney and Pagano [1970] for multilayered anisotropic plates, and by Dong and

Tso [1972] for multilayered anisotropic shells. Both of these approaches (C.L.T. and S.D.T.)

I considered all layers as one equivalent single anisotropic layer, thus these approaches are inade-

quate to model the warpage of cross-sections, that is, the distortion of the deformed normal due

to transverse shear stresses. Furthermore, the assumption of nondeformable normal results in

3 incompatible shearing stresses between every two adjacent layers. Also the later approach

requires the introduction of an arbitrary shear correction factor which is dependent on the lami-

3 nation parameters for obtaining accurate results.

5 The exact analyses performed by Pagano [1989] on the composite flat plates have indicated

that the distortion of the deformed normal is dependent not only on the laminate thickness, but

also on the orientation and the degree of orthotropy of the individual layers. Therefore the

I hypothesis of nondeformable normals, while acceptable for isotropic plates and shells is often

quite unacceptable for multilayered anisotropic plates and shells with very large ratio of Young's

5 modulus to shear modulus, even if they are relatively thin. Thus a transverse shear deformation

theory which also accounts for distortion of the deformed normal is required for accurate predic-

I tion of the behavior of multilayered anisotropic plates and shells.

I Along this line the work of M. Epstein and P. G. Glocker [1977,1979], P. M. Pinsky and K.

E Q 0. Kim [1986], and J. N. Reddy [1988, 1993] can be mentioned where the theory of multi-

director surfaces was used to model multi-layered plates and shells. Pinsky and Kim's work was
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based on multi-layered shell theories of Epstein and Glockner where the concept of multi-

I director field defined over one reference surface was employed for the description of the initial

I geometry and motion of multi-layered shells.

Reddy proposed a displacement based, layerwise shear deformable, CO theory which also

accounts for the warping of the composite cross section. In his theory, there is a single reference

U surface and a director is associated with this reference surface. The variable kinematic finite ele-

ment is developed by superimposing several types of assumed displacement fields within the

I finite element domain. The underlying foundation of the displacement field is provided by the

i assumed displacetuent field of any desired equivalent-single-layer theory and the layerwise dis-

placement field is included as an incremental enhancement to this underlying field. This work

I has been reported for linear analysis and for flat geometry domain.

3 Unlike the equivalent single-layer theories, the layerwise theories assume separate dis-

placement field expansions within each material layer, thus providing a kinematically correct

3 representation of the strain field in discrete layer laminates and allowing accurate determination

of ply level stresses. During the course of this research, we developed a layerwise shear deform-

able, multi-director theory which directly address the technical drawbacks present in most of the

I theories that have been proposed for composite analysis to date. The main features of the theory

are summarized as follows:I
* The displacement field proposed in this work is continuous in 3-D where as the rota-

5 tion field is layer-wise continuous (in 2-D) and can be discontinuous across the finite

element layers through the thickness direction.

3 * The displacement field fulfills a priori the static and geometric continuity conditions

3 between contiguous layers.

0 The novel idea in the assumed displacement field lies in its capability to model the

distortion of the deformed normal, without increasing the number and order of the par-
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theory.

I Another new Idea in the theory is its 3-D feature, thereby modeling the interlaminar

3 conditions and predicting the 3-D edge effects more accurately.

0 A salient feature of the proposed theory is that, at most, only first derivatives of dis-

3placement and rotation fields appear in the variational equations. The practical

consequence of this fact is that only CO continuity of finite element functions is

U required which is readily satisfied by the family of Lagrange elements.

0 The number of partial differential equations in the resulting system is independent of

the number of plies and their orientations in the composite.

0 Another advantage of the proposed composite shell theory lies in the greater flexibility

in the specification of the boundary conditions.

7The theory covers a wide range in the sense that in one limit case when there is only

3one layer of proposed elements through the thickness, one recovers the features of the

standard Shear Deformation Theories (S.D.T.). However the added advantage in the

3 present case lies in the 3-D feature of the theory which controls the variation in the

i thickness via the Poisson terms rather than ad hoc mathematical tricks as done in the

literature.

I In another limit case, one can model the composite with one element per ply through

the c. : te thickness, a procedure that is typically done while using the standard

I3-D anisotropic elasticity elements. The added advantage of the proposed theory in

5 this limit case is that because of the shear deformation capability of the proposed ele-

ments, they model the warping of the deformed normal more accurately, thereby

g the bending behavior.

0 From a practical design point of view it provides the engineer the freedom to deter-

Imine the precision in analysis. If a general response of the composite structure is

required, the composite can be modeled with one element through the thickness. On
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the other hand, the designer can model the thickness with as many layers of the pro-

3 posed element as deemed necessary to achieve the required accuracy.

0 Furthermore, it is feasible to employ this formulation for constructing plate and shell

finite elements via the finite element displacement method.

rn Details of this work are discussed in this report and a summary of the content of the report is

3 presented next.

I 1.3 Summary of the Report

3IThe results of our efforts during the course of this research are presented in section 2

I through section 14 of this report. A summary of the contents of these sections is presented in the

following.

In section 2 the kinematics of the micro- and macro-structures were examined and the rela-

"3 tionship between strain measures at micro- and macro-levels were derived. The field equations

for composite laminates were derived through a direct integration of field equations of classical

3 continuum mechanics. The linearized kinematic measures were derived in the context of

infinitesimal deformation and the relation of linear strain measures with displacement vector and

director displacement vector were obtained. The equations of motion in the linear theory were

I derived and were presented for both curved and flat geometries.

5 Section 3 showed the derivation of constitutive relations for composite laminates. A pro-

cedure for deriving the relation between composite quantities (i.e., composite stress tensor and

3 composite couple stress tensor) and strain measures at macro-level were presented. The deriva-

tion was performed for a bi-constituent composite laminate and the constitutive relations were

I expressed in terms of material constants associated with every individual layer.

B
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Section 4 presented the complete theory for linear elastic composite laminates. The rela-

I tionship between the displacement vector and the director displacement vector was derived

I based on the geometrical continuity at interfaces. The field equations were derived in terms of

displacement vector and it was shown that classical continuum theory can be derived from Cos-rn serat composite theory for the case of a single constituent. The theory was further simplfied for

bi-laminate micro-structure composed of isoropic constituents. Finally the constitutive relations

3 for composite stress tensor, composite couple stress tensor and interlaminar stress vector were

derived in terms of the displacement vector, its gradients and material constants of individual

constituents.

I Section 5 was the extension of the theory for multi-constituent composites. The micro-

structure or representative element was assumed to be composed of several constituents which

repeated themselves in the layering direction. The development of this section is particularly

I suited for fiber reinforced composites where the fiber direction changes in the stacking sequence

of the plies. The theory was simplified for the case of isotropic constituents.I
Section 6 presented the extension of the theory from a purely mechanical theory to a ther-

I momechanical theory. In this section composite field quantities corresponding to the heat flux

i vector, the heat supply and the specific entropy of classical thermo-mechanical theory were

introduced and the equation of local balance of energy and the Qausius-Duhem inequality were

I derived in terms of these composite field quantities.

Section 7 presented the constitutive relations of linear thermoelasticity for composite lam-

inates. These constitutive relations were derived for the composite stress tensor, composite cou-

3 ple stress tensor, entropy, heat flux vector and heat flux couple vector. The developments of this

section were parallel to those of section 4 and a set of coupled thermomechanical field equations

I in terms of the displacement vector and the temperature were presented.

I
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In section 8 a linear theory for cylindrical laminates was presented. Relative kinematic

I measures for cylindrical geometries were discussed and linearized field equations along with

constitutive relations in cylindrical coordinate systems were obtained. The theory was extended

to thermoelasticity and explicit thermoelastic constitutive relations for isotropic layers were

U derived.

3 Section 9 followed developments parallel to section 8 but for composite laminates with

spherical geometry. The theory was extended to thermoelasticity.

Section 10 presented the results of stress analysis of a composite laminate with traction free

U edges. The problem of a finite-width symmetrically laminated composite plate under uniform

one-dimensional stretch was studied and it was shown that the present theory captures the three-

3 dimensional response of the laminate at the free edge boundaries. The predicted results were in

agreement with earlier studies of the subject.

Section 11 presented the wave equations in laminated flat composites. Expressions of wave

velocities for longitudinal waves, horizontally polarized shear waves and vertically polarized

3 shear waves were derived.

I Section 12 followed studies parallel to those of section 11 but for elastic waves in cylindri-

cal and spherical laminates. Expressions for motion of rotary shear waves, axial shear waves

3 and radial waves in cylindrical composite laminates were derived and general solutions in terms

of Hankel functions of first and second kind were presented. Similar developments for spherical

laminates were followed. It was shown that for isotropic materials the displacement equations of

3 motion for waves with polar symmetry can be recovered.

3 In Section 13 the finite element formulation of the theory was presented. The approach

proposed in this work utilized a displacement field which fulfilled a priori the static and

1 geometric continuity conditions between contiguous layers. The order of the system was the
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same as in the first-order shear deformation theory. The chief advantage of the assumed dis-

placement field rested on its capability to model the distortion of the deformed normal and to

satisfy the continuity requirements without increasing the number and the order of the partial

differential equations with respect to the first order transverse shear deformation theory. The

theory was used to construct plate and shell elements for composite laminates which accounted

for the 3-D effects, through-the-thickness variations of stress and strain measures, and permitted

the warping of the deformed normal. These capabilities, in particular for curved geometries, are

unique features of the present developments. Based on these developments accurate stress

analysis of composite shell structures is no longer a formidable task.

Section 14 presented the results of several finite element modelings. These analyses were

performed for both flat and curved geometries. Various fiber orientations were considered and

different loading conditions were examined. The study included:

3 extension analysis of flat composite laminates with free edges.

. bending analysis of composite plates with different boundary conditions.

• stress analysis of composite laminates with geometric discontinuity in the form of a

circular hole.

. bending analysis of cylindrical shell composites with free edge conditions.

These analyses showed the main features of the present theory. In particular, an accurate model-

ing of discontinuities in composites and analysis of laminates with curved geometries was shown

through the application of the proposed theory. These unique enhancements of mechanics of

composite materials provide the required computational capabilities for further application of

composites.
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2.0 MICRO-MACRO CONTINUUM MODEL OF COMPOSITE LAMINATES

2.1 Kinematics of Micro. and Macro-Structures

Let the points of a region Rin a three dimensional Euclidean space be referred to a fixed

right-handed rectangular Cartesian coordinate system xi (i - 1,2,3) and let 01 (i - 1,2,3) be a gen-

eral wnvfctecurvilinear coordinate system defined by the transformation x1 = x'(Oi). We assume

this transformation is nonsingular in R Furthemore, let t represent the coordinate of a micro-

structure in the layering direction with 4 = 0 corresponding to the bottom surface of the micro-

structure. We recall that a convected coordinate system is normally defined in relation to a con-

tinuous body and moves continuously with the body throughout the motion of the body from one

configuration to another.

Throughout this work, all Latin indices (subscripts or superscripts) take the values 1,2,3; all

Greek indices (subscripts or superscripts) take the values 1,2 and the usual summation conven-

tion is employed. We will use a comma for partial differentiation with respect to coordinates 0e

and a superposed dot for material time derivative, i.e., differentiation with respect to time hold-

ing the material coordinates fixed. Also, we use a vertical bar ( I ) for covariant differentiation.

In what follows, when there is a possibility of confusion, quantities which represent the same

physical/geometrical concepts will be denoted by the same symbol but with an added asterisk (*)

for classical three dimensional continuum mechanics and no addition for composite laminate

(macro-structure). For example, the mass densities of a body in the contexts of the classical con-

tinuum mechanics, and the composite laminate (macro-structure) will be denoted by p* and p,

respectively.

The micro-macro continuum model of a composite laminate is illustrated in Figures 1 and

2. Figure 1 shows a typical composite laminate (only three micro-structures are shown in this

figure). Figure 2 shows a shell-like micro-structure with its associated coordinates. This micro-

structure is composed of two constitutents and can be generalized for cases of multi-constituent

composites.
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We begin the development of the kinematical results by assuming that the position vector

_ of a particle P of " representative element (k-* micro-structure), i.e., p'(0,0(k),k,t) in the

present configuration has the form

P* i r(=,oeqo),t) + td(Oa,P"),t) (k = 1,...,n) (2.1)

where r is the position vector for the surface 4 = 0 and d is the director field. O0k), at this point,

Im is an identifier for the kh micro-structure. Greek super- or subscripts will assume values of I

Iand 2 only. The dual of (2.1) in a reference configuration is given by

P" = R*(O',0(k)) + .D(Oa,0 3(k) (2.2)

If the reference configuration is taken to be the initial configuration at time t = 0, we obtain

p°(q,(),{,Ao) = r(,p,03),o) + 4d(qO,03),O)

= R(OaO(k)) + 4D(0a,&it)) = e(0,0n),k) (2.3)

The velocity vector v of the three-dimensional shell-like micro-structure at time t is given

by

v== a(O,(k),,,t) (2.4)* at

where a superposed dot denotes the material time derivative, holding 0" and • fixed. From (2.1)

and (2.4) we obtain

v =v + w (2.5)

where
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v=r , w=d (2.6)

The base vectors for the micro- and macro-structurts are denoted by g:' and 3, respectively,

5I and we have

S=3(2.7)

L=ae -• ' "= " 0

Using (2.1) and (2.7) we obtain the following relations between g" and gi

(2.8)
g3 =g3=d

where ( )L denotes partial differentiation with respect to 61.

By a smoothing assumption we suggest the existence of continuous vector functions

gi(O¶,03) for the macro-structure with the following property

g(Oa,03) e- = &(Oa,03(1) (2.9)

where g(Oa,&3(k)) are defined according to (2.7)2. A similar smoothing assumption is also made

for the director d which we like to attach to every point of the macro-structure. Based on the

smoothing assumptions we can write (2.8), as follows

3 = g• + 49k (3 k (2.10)

where { } stands for the Christoffel symbol of the second kind and is defined as

Ik =="
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1The following relations can also be derived between the components of metric tensors

I And go = & -gi

9:0 =f 954" + 4{3 k a|gfk + 13 k P)"k] e23 kMC) 13 JPJ)k

9,3 = U3 + (2.11)

3g3 = g33

which after simplification and linearization in terms of t reduce to

3 :i go. + I" u,3.a (2.12)12
933 = 933

The determinants of metric tensors g1j and gj are also related according to the following

j relation

I g" =g+A (2.13)

I where

I g* : det(gi) , g = det(gj)

911.312.393.1 g11 912 913

9 12 922 923 + g12g,3 g2,333.2  (2.14)

1g13 g23 g33  g13 923 933

and the final result has been linearized in terms of •.

We recall that the director d is the same as g3 and therefore when referred to the base vec-

tors gi it has only one non-zero component, namely d3 = 1, so we can write
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d=d' , d=O , d3 =I
(2.15)

dd , d=g3  (i-=1,2,3)

where d1 and di denote the covariant and contravariant components of d referred to i and &,

respectively. The gradient of the director d may be obtained as follows

d =3.= (3 k lgk=dkgk

The vertical bar ( I ) denotes covariant differentiation with respect to gij. For convenience we

introduce the notations

= dj= dj
(2.17)

)' = d =d',j

From (2.17) it is clear that

Ij e'=")-kj (2.18)

Making use of (2.17) and (2.16) we have:

)-'ij & dij = (3 i j)

(2.19)

j = gdkJ = [3j'i]

Consider now the velocity vector v which can be written in the form

IV = vigi = vig (2.20)

Again we make a smoothing assumption for the existence of the vector function v(0",03) such

that v(ea,03), 1,q = i(Oa,)3(k) after which we can define the gradient of the velocity field and

we have

V i= (vgj),i = vi Ijg (2.21)
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We now introduce the notations

(2.22)

Vij = gi = - ViIj

From (2.22) it is clear that

(2.23)

vj = vij = Vi gj(

We observe that both -j and vii represent the covariant derivative of vector components and

hence transform as components of second order covariant tensors.

We may decompose vii into its symmetric and skew-symmetric parts, i.e.,

Vuj : V(ij) + VijR = ij + (Oij

1
=ij = VJ- "I" (Vij+vji) = 1j (2.24)

(Oij =- j (Vi--vji) =-"_ (0ji

Also in view of (2.6), (2.7)2 and (2.24), we may express i" in the form

L = va = (11k=+ wk,•g
(2.25)

The gradient of the director velocity in 0a direction is obtained by writing

w,= dac = (dQ) =~

= X! 9k + Akk = gk + Xh + X3
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"=! + ),".OtA+(OkO)k + . wkg•

- [;,! + A(q•+04)+ 4Wk]gk (2.26)

The dual of the above expressions in the reference configuration can be written easily by

I substituting appropriate capital letters for small letters.

We now introduce relative kinematic measures Yij and icj such that

1J I (gij - Gj) yj (2.27)

I -(2.28)

I where

Gij = Gi" Gj (2.29)

Aij = [3j,i] = I (G3ij + Gj.3-G 3!i) (2.30)

3 Making use of (2.12) and similar expressions for the reference configuration we can relate

relative kinematic measures ¥i• of the micro-structure as followsI

--'3aO + = L k(gQ8,3- GO,3)

31=Y + -L- + (KP + NO (2.31)

. 1 1 1f 3 -R(O + 9-• 33.,a - (Gu3 + - G33.,0]

I
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-a3 + "" 3a (2.32)

i = -3 (2.33)

In obtaining the above results we have noted thatI
1 1

Ix = [3c1 = 2 gs3 A (2.34)

and we have linearized the result in terms of

I
I
I
I
I
I
I
I
I
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I 2.2 Basic Feld Equations for Micro- and Macro-Structures

I The iree-dimensional equations of motion in classical continuum mechanics are recorded

here for the kth representative element (micro-structure) in the present configuration

3pg*I/2 = 0 (2.35)

Ti4 + pb g = p*,*g*La (2.36)

where g xT =-0 (2.37)

I t '•' , Tr" = glf2r•'iJg (2.38)

I The argument of all starred functions recorded above is (Oa,03(k),k,t) and the equations are writ-

ten for each and every representative element (k = 1,2,...,n) which is assumed to repeat itself in

the present model.

1 Now introduce the following quantities for each micro-structure:

I Composite Stress Vector Ti:

Ti(ea'&3(k),t) A j T*i(Oa,03(k)'4't)d4 (2.39)

I
Composite Stress Couple Vector S':I

I -- 42 1 4T'0(eaO ()'4't)d4 (2.40)

I Composite Mass Density p:

P9l1/2 P*g*tdd (2.41)

I 
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pgS(z) -42 (krp'g!"dt (atl2) (2.42)I 0•

I Composite Body Force Density b:

pg'I~b t-L p~bgS*d4 (2.43)
42

I Composite Body Couple Density c:

I xw'c2h 1 2 p'b'g'4dA (2.44)

The quantities on the left-hand side of equations (2.39)-(2.44) are discrete in terms of the var-

able 0(k) which are made continuous by smoothing assumptions. The composite mass density

p. in the reference configuration is also defined as follows:I
IpOG =i- poG1 It2d4 (2.45)

where po is the mass density of the micro-structure in the reference configuration. Since

p*g*l1 = poGe l 2, the continuity equation for the macro-structure is readily seen to be

P9 Wgl = po GI (2.46)

Now consider equation (2.36) and first divide it by 42 and then integrate with respect to 4

from 0 to 42 to obtain the equation for balance of linear momentum for the macro-structure

I 42 1 16a0 d+L1

"4'2 j T'.d, + T.2 1 -pdb'g"/2d4

I ~

I p*(' + 4w)g*trzd4 (2.47)
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Each term in the above equation can be represented in terms of the quantities defined in (2.39)-

I (2.44) except the second term which is the difference between interlaminar stresses above and

I below the representative element divided by its thickness 42 as

Io r d• = R t'r'.o•,o•'÷,- T' 3(9a,0k),t)] (2.43)

Now we postulate the existence of the continuous vector function o(oa03 ,t) whose values at

03 = On) are the same as interlaminar stresses T*3(0a,03(k),t) and further approximate (2.43) as

the gradient of this function in the 93 direction. With this in mind we write (2.47) as

A Taa + - + pbgf2 = pg1 2(, + z1*) (2.44)

To obtain the equation for balance of director momentum, (2.36) is multiplied by •,

I integrated from 0 to 42 and divided by 42 to get

Sf 4-T a'd + -L + " d4

_ p~g.*1(4 + 42*)dt (2.50)

Again the second term in the above equation can be written as

32 4 W d [tT*3] - 4 = O - T3 (2.51)

3 As a result we have

S sA' + a - T3 + pg1%2c = pgf2(zlj + z2*) (2.52)

3 which is the equation for balance of director momentum.
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Next, we consider (2.37), divide it by k2 and integrate with respect to k from 4=o to 4=42

Iand making use of (2.8)12 we get

gT

I or (2.53)

I + tda) xTSad* + d×T*3dfi0

Hand substituting from (2.39) and (2.40) we obtain

U x ×T+ d, x Vs+ d x TS = 0 (2.54)

which can also be written asI
x Ti + dx S =0 (2.55)

This is the balance of moment of momentum for the macro-structure.

N Now we proceed to obtain an expression for the specific mechanical energy. Such an

expression for each micro-structure can be written as

p g lM* = T*i. vj (2.56)

IFirst, using (2.5) we write this equation as

p * - T*a" -(V + tW),. + T.3" (V + tW)

ST*a -v., + WTa. W ",+T3 -W.7=_ (2.57)

SDividing (2.57) by 42 and integrating with respect to 4 from 4 = 0 to 4 = 42 will result in

LIT (2.58)IA2 Sp*g*E2d. + - ETad4.w -3dt'w
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We now define composite speciflc mechanpcal energy for the representative element byI
pgI .• p'g1 "rd, (2.59)

I From this definition, the equation of continuity and other definitions (2.39) through (2.44) for

composite quantities. (2.58) can be rewritten as

I pg9/2i = A.v + "wý.a + T"w (2.60)

Since v =v, v= 0 = v., = ja and w = d = j 3, we can further reduce (2.60) to

I pg91/2 = Ii. ji + SV. w. (2.61)

which is the appropriate expression for the specific mechanical energy of the macro-structure.

I
I
m

I
I

I
I
I
I
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2.3 Field Equations in Component Form

We obtained the following field equations for the macro-structure (balance of mass is not

recorded since it is a scalar equation)

+pgV = + zw) (2.62)

Sa+ o - 'F3 + pg I2c = pg1 Z(zli + z4) (2.63)

gixT4+dAxSa=O (2.64)

And also the following expression was derived for the specific mechanical energy

pg912• = ag + s" w• (2.65)

By referring various vector quantities to the base gi we would like to write the above equa-

tions in component form. First write

Ti = Jgi (2.66)

(Y = aigj (2.67)

SI = g1/2 saJgj (2.68)

b = bjgj , c = cig (2.69)

where 'ij and Sai are contravariant components of composite stress tensor and composite couple

stress tensor, respectively, a' is the interlaminar stress. Now substitute in (2.62) and obtain

(gl/ 2 iajgj), + "_" (o'gj) + pgl2bigj = pgifl(-. + z1•)gj

(gqi2 tJ),agj + g12 taj (j k j gk + O3gj + 0i (j k 3}gk + Pg9inbigj
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PS 112f(o + zig

or

2 (ginaý. + glfl t{(kJa) + Ok3 + )C (k S} + P g91fb

=pgi/ (W + z20) (2.70)

IEquation (2.63) reduces to

(gIfl Scjp + aig~ _ gin 2,eg + pgl/2Cjgj

= pg 1/2(zIO + z2)gj

or

(gf2 SaJ)U + gl2 Sak (kJa) + aJ- glf CJ+ pg1dcJ= p gln(zl¶J + zi•) (2.71)

Equation (2.64) can be rewritten as

L. x (glf E'rjgj) + ki•. x (gW Sa~gj) =0

or

I 1/(tij + .isaj)gi x 9j = 0 (2.72)

since g * 0, gL x gj = ;ijge and ijk is skew-symmetric we conclude that the quantity in

parentheses in (2.72) must be symmetric in i and j. As a result, the conservation of angular

momentum in component form is the symmetry of Tij defined by

4Ti 1-0J + xis'1 J (2.73)

TJ = =Tj (2.74)

The expression (2.65) for the specific mechanical energy can also be written as
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gi = g", tl -"k + gs* `I&

=gmegl'2 0Jg•. + +g S gj• g, )

= gl/2(•,jgj. V.. + %3jgj. W + Sc•jla )

= g "ooin ia + ,r3Jwj + SaJwj i.)

We have now the component form of the expression for mechanical power

Pe ta- vj IS (2.75)

An alternative form for mechanical energy expression is derived in which the rates of rela-

tive kinematic measures will appear. Using (2.25), and (2.26), we rewrite (2.75) as

p = p =J(T1ja + 'jM) + T3Jwj + S[J + Xj T 4" + QTjO + ÷ Wj]

= (Ji + SpjX)lja + (tj + spSJA)()A + spJi•

+ (,3j + [SPJ)wj (2.76)

Recalling (2.73) and using symmetry of Tij and skew-symmetry of wij we can write (2.76) as

3P fiTa + SPJ3jP + T3Jwj + Ta3o(3. (2.77)

By (2.25), we have

"gp1a = 'ql + coPQ , ip ga =cz p + CoUP (2.78)

Therefore

gag = 9 +& g " gp = 2aTIp (2.79)

1
TIQý -" "2" - -- '(2.80)

3 BASE



I
2-18

In the last result we have used the definition of Uq from (2.27). By (2.25)12 we have

9"3 = 113c + 0. (2.81)

. = --wa (2.82)

ITherefore

&z3 = g" 93 + 93" ga =-T1a+ 03+ Wa (2.83)

i L3 (a + w.) = (%a + wa) (2.84)

Again by (2.25)2 and (2.27)

1.

i3"g3 = 933  (2.85)

i3 =-L 33 W3 (2.86)

and by (2.28)

I p=1C~~(2.87)

Substituting from (2.80), (2.84), (2.86) and (2.87) in (2.77) we get

S= r + 3(2i6 - (63 + w.)) + S + Taw + 7 + Ta%)U (2.88)

which is simplified to

P = -rAP + 2T"3Ya + V3 3 + S PjKp (2.89)

If symmetry of T'j and -ti is considered we can further simplify (2.89) and obtain

I ...~+ SPj.c~ (2.90)

or
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1 (2.91)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
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2.4 General Constitutive Assumption for Elastic Composite!
At this point we postulate the existence of specific internal energy in purely mechanical

I theory which depends on relative kinematic measures *j and Y.. as defined in (2.27) and (2.28)

V = (ijxra (2.92)

I PpNI (2.93)

By usual procedures we obtain from (2.91), (2.92) and (2.93)

IiJ=p(o!. - .,•.-4 ) (2.94)

Saj = p - (2.95)

Now the composite stress vector T1 and the composite couple stress vector Sa from (2.66) and

I (2.68) will be

T4 = pg"f7( O -X•2i-)gj (2.96)

Noalcjegt

S= pg O- X (2.97)

The coefficient pglf2 can be replaced by poG102 by taking advantage of the continuity equation.

Note that by these constitutive relations for Ti and S' the balance of moment of momentum is

identically satisfied.
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2.S Linearized KinematicsI
For linearized idnematics let

S= R (÷PO3 ) + eu(O¶93<k).t) (2.98)

d(OaO(k),t) = D(Oa,0O3) + a(Oa,03&),t) (2.99)

v=r=eu w=i=A (2.100)

where e is a non-dimensional parameter. The motion of the macro-structure describes

infinitesimal deformation if the magnitude of the gradient of the displacement vector eu and the

magnitude of the director displacement vector e8 are of the order of e << 1 such that in the fol-

lowing developments we can only retain terms which are linear in e. The base vectors gi are

found from (2.7)2 as:

g,= R.a + £'ua (2.101)

g3= d = D + eS (2.102)

The corresponding vectors in reference configuration are:

Gcf=Ra , G3 =D (2.103)

We now proceed to obtain the relative kinematic measures Yij and Y.. Using (2.103)2 and

(2.101) together with the definition of gp and Gp we write

gcp = (Ga + eu . • (Gp + eu.p) = Gap + e(Ga • u.P + uI • Gp) + O(e2) (2.104)

where O(e2) denotes terms of order 2 in displacement gradient, where

Ga" u.p + U.a" G Gp " = uj Igj + uj agj • Gp

= Ga• uy7 pk + Ga• u3
1pg3 + uYlIagy Gp + u3g g3 Gp3
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= uyipGa • (Gy+ e.y) + u3 gpGa• (D + e) + u7
1c(Gy+ eu.y) • Gp

+ u3 
1 0(D + eb) Gp (2.105)

I Retaining terms which are of the order of unity in (2.105) and substituting the result in (2.104)

I we find

a p - + u-GDp) (2.106)

I Here covariant differentiation is supposed to be performed with respect to the metric Gij of the

reference configuration and instead of eu we have used u with the same assumptions made for

I linearization. Similarly we can write

I g03 = (Gat + euca) • (G3 + E8) = G03 + e(Ga• - + Ucta" G3) + O(C2)

= G,33 + e(85m + u3 1a) + O(E3 ) (2.107)

I Again using 8 instead of e8 with the same interpretation we obtain

|1 (218
Y y3 -== (g0 -G)=O - (8d + u3 Io) (2.108)

3 To find Y33 we write

g33 = (G3 + E8) (G3 + E8) = G33 + 263 + O(e) (2.109)

133 7L (933- G33)=83 (2.110)

As for the measures ri., we proceed as follows

3 k = ga" d.p = (Ga+eu.,) • (Dp+te8.p) = Aap + E(uJ Igj• D p + G ,• -8i Igj) + O(e2) (2.111)

where:
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touI g" Dp u= u,(G + eu,.) • Dp + 031a(G3 + D p)

uy= A* + U3 ,IA3p + O(E)

G. G 8ipgj =8•,pGa -(Gy + eU.) + 831p GUa (G3 + e8)

= 8 ip+ 83 pDQ +O(e)

I Substituting these results in (2.111) and using the definition of rp we get

[rK, = Xp -A•p = uj I + 8a p + 8 3,,DG (2.112)

Now we obtain an expression for iC3

I )3a = g3 " dA = (G3 + E8) (DR + e8.0)

XIa = A30 + e(G 3 " 8.a + 8" D.a) + 0(0) (2.113)

We simplify each term separatelyI
G3" ,a = G3 " (8i 1gj) - b'T14uG3 " (G7+ c,,)

+ 8,3G 3 " (D + E8) = V, D + 8 3imA + O(e)

S= 8iJ1 Dj + O(E) (2.114)

8 -D(.8= = (Vg. - , Gk) = (Vgj) -• ,aG3

I = JA(yg, + 83g3) G3

1 = A[&(G7+ cu.) + 83(G3 + i)]. D

3 = O(e:) + A y + AQ83D3 = Aý8j + O(e) (2.115)

g However, since D' = 0 and D3 = I
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8,Dj = 8 ==83 (2.116)

i Substituting from (2.114), (2.115) and (2.116) in (2.113) and using previous notation for 8 we

I obtain

| 3,U = a - A g = bI Dj +Aq83 =831 + A83 (2.117)

To recapitulate the relative kinematic measures in linear theory are:

1

"Tap =.L (uCLIp + uPI+ u 3 ,pp + u 3 ,pD)

3YO.=y = Y " (u3 la + 8a)

1b 83 (2.118)

3 ip. =AJu ,+ 800+ 83jD,

3 ,:A =3 ICE+ I ý83

For a composite with initially flat plates we can always choose our base vectors Gi such that

I Gij = Gij = 8ij and as a result D' = Da = 0 and if we confine ourselves to small deformations, then

all Christoffel symbols vanish and covariant differentiations reduce to partial differentiations and

equations (2.118) for relative kinematic measures will further reduce to

1(UMP + up.G)

10 (u3.. + 8
(2.119)

I•3p = = 83,u

In writing these relations it has been noted that D, = 0, D3 = I and A =- 0.
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It is also desirable to find a relation between g and G, determinants of metric tensors in

present and reference configurations, in the linear theory. We recall the following relations

I 1f2=g×xg 2 "g3 , G 12=G×xG 2 G3

I1 x 9g2 = (G + eu,1) x (G2 + eu)

3 =G xG 2 +E(ulxG 2 +Glxu.2)+ O(e)

[glg 2g3] [GI x G2 + -(U1 x G2 + G, x u 2)] [G3 + e +()

S=G + e[GI x G2 •8 + u1 *G 2 x G3 + G3 x G," u.21  + O(E)

3G1/2 + FGI2[G 3 8 + u,.G 1 + G2 -U .2J+O(0)

Retaining terms which are of the order of e and using the previous notations for u and 8 we getI
I(G-L)1/2 = I1+ 83 + uaia (2.120)

G

Now the equation for balance of mass will readily reduce toI
PO = p( Gk)1/2 = p(l + 83 + uala) (2.121)

G

and since in linear theory displacement vector u and director displacement 8 satisfy linearity

I assumptions we obtain

I p=po(l 83 Uala) (2.122)
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I 2.6 Linearized Field Equations

We use pertinent results from linear kinematics and usual procedures for linearization to

write the field equations in linear theory. It should be recalled in such analysis that g is replaced

by G, p by po and Christoffel symbols are calculated with respect to Gij. By omitting the details,

the linear version of the equations of motion are recorded here!
(G42 TaJ)., + G'2 Tak {k j} + O + k {k j 3) + p. G2 bi = p.oG2 (BiP+ z) (2.123)

(G4 saJ),1 + G4 sak {k J} + O - GM iJ + p, G'/2 cl = = p, G'1 (zY + z2g) (2.124)

74Tij ='Ci + AqS'j = Tji (2.125)

I For a composite with initially flat plies further simplification can be made. As mentioned

earlier, G = I and all Christoffel symbols vanish identically. The resulting balance equations for

such a situation will be

I J+ Oj,.3 + po.b = po(WP + Azj) (2.126)

saiJa + A -+ _3j + poCj = po(ZIj + Z2ý8j) (2.127)

i =J --ij (2.128)

B
I
I
I
I
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3.0 CONSTITUTIVE RELATIONS FOR LINEAR ELASTICITY

For the representative micro-sructure let

1U0 C na az1,2 (3.1)

I ,,what

I C << (3.2)

i and ci (a = 1,2) are material constants in associated layers. Now we proceed to calculate Ti

I and S' defined in (2.39) and (2.40). First we recall that T*'= glfl2 =Ig g 1/2 g 1 (+_k A),
0~2 g

g + d. r g+ =g 3 and for brevity we omit the index x in relations (3.1) and (3.2)

"42 o 4 2 aT 2'1g#JT 2 'Ngj = T 12 1 cU (6 4 + 2c' :3y + c j)jd

i Substitute from (2.31), (2.32) and (2.33) in the above relations and get

7i= .-L fj gd(t~yp cyI

4~2
I ~ ~+ -'1 +g1 2 [ p )ciJmP + 1¢C3,pjo3]4g,*d4

-Vi -L 42ijlr./*l2 gj dt + "- (wap +t xjw)2 22 o4 2 gJ* 4 dý

| BASE
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+ IF3 0 ! J gc12 gjs t d4 (3.3)

We calculate each integral separately, noting that

3A d.2] (3.4)

2g 2g

S The first integral in (3.3) is

-, gjg d4 f (Cillg,2 + l g*'9)dt (3.6)

II The first term of (3.6) from (3.4) is equal to

3i W Tgwrd+ • 1 -d i2c*'d• (3.7)-, g 42 g' l 2( g • + k'T 2 ! 0 ~ d 28 cw

and its second term can be written as, from (3.5),I
Sglf93(-L42 J /d + o g T2 (3.8)

I Combining (3.7) and (3.8) we rewrite (3.6) as

glf2gj t2 ciJ•/dt + • j to wiJdd + g12d,y o•id

gj2gt2 , gjT 2.

1A •
+ 2, d (3.9)

The second integral in (3.3) is

- BASE
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. "P g1  td= (.c' g' 2 • + 1c6 g3-g3)d• (3.10)

The first term of (3.10) from (3.4) is

S42d

+ dt• V •ciudt (3.11)

2 42e

and its second term from (3.5) is

g1/29 3(±-L j ci4dt+ g 1 2Ci-•d4) (3.12)
2 o

Combining (3.11) and (3.12) we rewrite (3.10) as

g g12 9 JciJ(0dt + 2 0J +2 ciJ 9t2d +gl(2 d.•2
42 -T~a gj T2 .7T

2g42+ A- d'y 4 3 cW dt (3.13)

The third integral in (3.3) is

i- f •cýi 03gb1 t = gjId= A Io2 g 3

+g' 9d. _• 2d A 1+2

+2 -- d'2 - I k3cWdt (3.14)

The last result was written by noting the development in (2.13). The results in (3.9), (3.13) and

(3.14) can further be simplified by recalling (2.9)3, namely d, = Xgj and using the following

definitions and results.
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I Define

I M = 4i/42 <1 (3.15)

3 a2{ 01<4<4 (3.16)

IIthen,

I Now (3.9) is equal to

2f m I mA ~

I m 2iml*+IMC?.-Miv(Lmx

4g In

1(2 j 1 tIA M AIx +1+ I Mil

4gn 2g 3g

+m 11AB

4mn 2m 41LUR m

3 -mj&IMM )~A)(.8

(313 B A SEo ew ite s g I
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.i (sA ' i )p o ++R-'1+ !

+ 410-M) (I+m+. 1A +m+M2 m
2m 3g 3 m 2

3 3( m)]?PD] (3.19)

The expression for (3.14) is exactly the same as (3.19) except that (U.,P) in (3.19) should be

replaced by (c,3). These results should be inoWrpoated in (3.3) to find an expression for Tt .

Due to the presence of the factor glr2 gj in all these expressions and also the equality (2.66), we

can find the constitutive relation for 0'J. However before doing so we exploit the symmetry of

ck"O to further simplify (3.3). Since cijWp - c•Pa we can write

ci o S= cM = cw p (3.20)

I Therefore,

cijaP 2 = cij4(•,cp+ ) (3.21)

In view of (3.21), now we write (3.3) as

Ih
V '2 j c0* g*1r2g *dt + ii -- J ciiJ g12 gj - d• (3.22)

3 oj2 
d

With the explanation presented above, now we write the constitutive relation for riJ:

Im )MCI

- ~ l+m _1A 4 (l-m) 41A l+m+M2)na}k

+ m -m g 2m X (l+m+ 3g m

_3m g1A m C1 +jl 3 L .G
+-" +B A SE'(1+3-- r'

"3 BASE
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+ (l + m + 41, m _ _02-

11 3 ~ I 1 M IJ1~ (3.23)

If we further restrict ourselves to small deformatons of a composite with initially flat plies,

equation (3.23) can be simplified to

2 1(4

Of course In the above equations no distinction should be made between covariant and contra-

variant components of tensors. Using (2.114), equation (3.24) can be written in terms of dis-

placement vector u and director displacement vector 8, hence

'to = mC6B+ (I-m•)c4) + tk (mc.' I-m2 ),
2 m

= (mciSj + (1-m)ci} - (up + up,•) + 2(mci• + (1-m)C ()(U3., + 80)/2

2-n

+ ImCi+ (l-M)Ci%)3 +LI q (3.25)

Using the symmetry of cpo's (3.25) can be written as

tjj = (nO(.cP + (l-m)ci%}uMp + {mcW3 + (1-M)C PMU3,m

3 + (mciA + (l-m)ci%)8. + (mcni +(l=.m)c P)J383

Si+ + (l-m2) Ci%+}88

S+= {mci+(mBAS

I BASE
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+ + ( 2)

The same steps can be followed to calculate Sa and we record the procedure here KS* 1• 11

12 T'dt 2

*al~ g*d 4 g1AcP + ay

Sa4" T~c•'-"2k2 "gl2a gT

cq 3 )1;3 )gj'dt 2 1 Wg ,*' dt + ±* T2 kej• gadt (3.27)

This is basically the same result as (3.22) except that i has been replaced by a and the integrand

has been multiplied by k. The first integral can be reduced to the following by referring to (3.18)

3g42 j,_ [ Im-d +( Mm) c a'r] + 1g

1 .~(mc~0"+ ( a"J + (1-MMcM) (3.28)?43 M2 8g ) 1 I me M

Similarly the second integral is simplified and by reference to (3.19) the result is

3 41t g.(.* + aj*]

- gl/2gj( • [MCI'• +( 1m)CMj +m --1g [MCI*' M3( _ m)c2J]m

-~~+ 4. ..•3 [MCI + ( _ )q~• + 4A •m_.. [mcp+4A(_.l4 ~.]

3 8g 4 lOg

+'-U +•'1) '- + l g mA )c2r (3.29)

M2  8g M3 4M3 lo

I BASE
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Again it is seen that because of the factor g S1 gj and the relation SV =i S gll gj we can readily

write the constitutive relation for Saj, the result is

IC 4 1*(cad(I+LA) 1 _ IIA )c
1 (-r 2  3-g 3  8g -u 3  l=-m 4

2 in - --3m2 3g 3M M3  g

. lmi' + _i- + A a y* + + 'A
I g I 194 lOg 3m2  8g rn3

1 X -rnm' 1 •9 )C (3.30)

This is the general constitutive relation for SaJ in linear elasticity. If, as before, we confine our-

selves to small deformations of a composite with initially flat plies (3.30) can be simplified to

"1 1 M 2  3+1(MCa+ - 2  c2)Kp (3.31)

with no distinction between covariant and contravariant tensors. Once written in terms of dis-

placement vector and director displacement and simplified as done in obtaining (3.26) we get

Saj - 1 l(mc Jpk + ± "-pk)U 1-r

2 m 2 1 ( nc~ ~~

IlmeT 2(MM - n C2P)84P (3.32)

As the results of this section indicate, even in the simplest cases of small deformations of

an initially flat composite (composites with flat plies) higher gradients of displacement vector

become significant and they appear in the constitutive relations for composite stress and compo-

site stress couple. As defined by (3.15) m is of the order of unity, tj and 42 are usually small

lengths; however their products with components of cjW and even the product of their higher

powers with elastic constants may be indeed significant quantities, in which case we get

BASE
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contributions tomij and Sj. In the trivial caw m - 1, I t2 0 We get Cijl, Saj m 0 and

I the equations of linear elasticity are recovered.

I
I
I
I
t
I
I
I
I

i
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4.0 COMPLETE THEORY FOR LINEAR ELASTIC COMPOSITE LAMINATESI
The results of sections (2) and (3) are combined to obtain the complete equations for a

I linear elastic composite laminate. However, before doing so we should derive appropriate

expression for p., zl and A As before, we assume that the representative micro-structure is

composed of two homogeneous layers with respective densities P, and P2 in the reference

U configuration (pI and P2 are constants). Recalling equations (2.45) and (2.46) we write

Spg9 -12= po G -4 p:G*'1 2d4 (4.1)

I Now by (2.13) we have

I where A is understood to be the sum of two determinants similar to those expressed in (2.14)

I except for substituting gij by Gij. We have

S P, 0<4,<414.3

P 1. P2 <<2 (4.3)

I Substituting (4.2) and (4.3) in (4.1) and using (3.7) we set

S= (1 I+ A+m 41A)(1 -m )p2  (4.4)
P-)mpl + (I + 4mG

I Of course the composite mass density p is related to po through the equation (2.122).

SWe proceed similarly to calculate zi and z2 using their definitions in (2.42)

*
pg9 z1 = p.Gl 4z2= 1 J kp:G*1 2d4 (4.5)

Here again the result has been linearized in terms of •.
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Pg'VZ1 = p0G 42 = (4.6)

After substituting from (4.2) and (4.3) in (4.5) and (4.6) and using (3.17) we get

I (-r 2 II A -m(
Poz =1 [(1 + L-)mPI + (- + );1 (4.7)

-- L2[( _ + 3It,)M- ( l- 34+1•A l-4

poz2 - + m -m)P21 (4.8)

3 8Gm2 8G m3

For a composite with initially flat plies (4.4), (4.7) and (4.8) are reduced respectively to

I Po = mPI + (l-M)P 2  (4.9)

P1zI = - (MP + P2) (4.10)I
Po2 3 = I P2) (4.11)

To formulate the complete theory it is also worthwhile to derive a relation between the

director displacement 5 and the gradient of displacement vector u in the 03-direction. In order to

derive such a relation we enforce the continuity of the position vectors p* and P* between two

adjacent micro-structures. Recalling (2.1) and (2.2), we have the following relations for the kh

3 micro-structure:

I p*(Oa,e3k),t,t) = r(Oa,&P(k),t) + 4d(a,&)3(k),t) (4.12)

5 P*(O(a,0),4) = R(O03(kI ) + .D(O',03(k)) (4.13)

Now in order that position vectors p and P* be continuous on the common surface between kth

and (k+l)u micro-structures we should have

SP*(O',&(k),42) = P*(9',&(k+l ),0) (4.14)
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p'(OrzO),•2 at) = p*(O+,&•+),ot) (4.15)

I Using (4.12) and (4.13) we can write (4.14) and (4.15) as

I R(Oc,9O+l' = R(OzkO) + 42D(O",0*) (4.16)

3 I.(OB,03(k+1),t) = r(a,03k),t) + 42d(Oe,0ok),t) (4.17)

I Recalling (2.98) and (2.99) and identifying eu and eg with u and 8 as before we conclude from

(4.16) and (4.17) the followingI
u(Oe2,en+l),t) = u(eep,&k).t) + 42a(e,.e k).t) (4.18)

or
I 5(xon0"),t) = • {u(a&03(k+l)It) - u(wOa03(k)t)] (4.19)

By smoothing assumptions and approximating the right-hand side of equation (4.19) as the gra-

3dient of the displacement vector in the e3 direction we have

I 8(ea03 ,t) = lu(eca,') (4.20)a63

I In component form we have

I8 =- 8jgj = (uJgj).3 = U1 139j (4.21)

3 or

I 8J--"U113 I 8j" ujl3 (4.22)

I For a composite with initially flat plies the equation (4.22) reduces to

I = U-3  (4.23)

I BASE
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With this simplification, equations (2.119) reduce to

W 1 (4.24)

ic=ja uW (4.25)

Using (4.22), equations (2.121) and (2.125) are also reduced toI
po = p(GJ")12 = p(l+uji) (4.26)

*G

P = Po(1-uj j) (4.27)

The constitutive relations (3.26) and (3.32) for cij and S0j for a flat composite are also further

i simplified by using (4.23)

I (Mij i+ (1-m)Ci$}ukJ+ fmciT.+ 1-m 2 ci•) Ua u3 (4.28)

I and

1mst,{n (mc+Y l--2¢(}/+4• 2{mcQ(14• + c2pup3 (4.29)

I Now we can write the field equations (2.113) and (2.124) in terms of the displacement vector u

and its gradients. It should be recalled that the resulting equations are the linearized field equa-

tion for small deformations of a composite with initially flat plies. These are the counterpart of

3 the Navier-Cauchy equations in linear elasticity. The appropriate equations for a general com-

posite will be derived in later chapters. Using (4.9)-(4.11), (4.23), (4.28) and (4.29) we write

U (2.123) and (2.124) as

I
I
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*Mq (m+ (l-1M)4Uk+ (Mu4+- Cap) U~

In3+ Fi3+ IMPI + (l-"M)p2)bj = (mp, + (l-rnM)P2]ji

2Iw p A (4.30)

Iland
- + •( + + i-r4.n0

| a-~~ l-2 )u-m

2 41 (mC4+ Jý)Uk + 3 m J4 + M2 C2;P)Uk

+i Imj a -[I• /+ (l--m)C&) Uk./ - -L II T- k

+[MP, + (1-m)p°]CJfi =" I 4(mPI + -m p2Ajj

212

"+ " 21 (mP1 + - p2)dj.3 (4.31)

3 At this point we may notice that an ordinary continuum (a single material continuum) can be

regarded as the limiting case of a composite laminate when 41 = 42 -- 0. Therefore, we may

-- anticipate to derive the equations of linear elasticity by letting m = 1 and 1 - 0 in equations

I (4.30) and (4.31). Doing so, equation (4.30) reduces to

3 C(Ckd + yj,3 + pbj = puj (4.32)

where subscript and superscript 1 are dropped because we have only one material. To simplify

equation (4.31), first we recall the definition of c in equation (2.44) and notice that by the mean-

3 value theorem, c - 0 as 42 -+ 0, hence

Ij --c 3 PuW = 0 (4.33)

B BASE



I
4

Substituting for aj fnom (4.33) in (4.32) we get

ca 1 ukt + c30,kS + pbj = piij (4.34)

and combining the first and the second terms we get

U c +pbj=piij (4.35)

I For a completely isotropic continuum

[ cu = )j8W+ +(148A, + vjk) (4.36)

where X and p are Lame constants and (4.35) reduces to:

I tuji + (X+g)ujij + pbj = piU (4.37)

which are the equations of motion for an isotropic media.

For the case of the composite laminate we can also eliminate aj between equations (4.30)

and (4.31) to obtain the appropriate equations for displacement vector u. First we do this for a

static problem with no body force. For such a case we let

Sb=c=d'=0 (4.38)

K i n equations (4.30) and (4.31), hence

1-mte(• •1-m2 41

3({mCa(+ (1-M)ciJd)Uk/a + (mcQ(P + m• c(ýP} " Uk.P3a + (;P = 0

I and

I

I BaASEt
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L2 -- (MCJ.f9+ -

+ , j - {mc4J.V +l--m)Cý)c• uWj -•- j; + C&a•u 0

3 Eliminating aj between these equations, we get

(MC -+ (l-rn_ )uk + (- C•u( + 1-r 4 Lu =n4.9

I2I+ (rncjj+ (1-M)CJý ) Uk + -L (rnC1I + C-J- cj2)Uka2 In

1m.ý 1( )+ lc 2) UJ,3 (M,~(14 + C,&) ukpc 3 =0 (4.39)
2 a ~~In ki 33  c in2

By combining the first and third and also the second and fourth terms of the equation (4.39), we

I get 2II•I 1-rn

{1 (l- mC}U + Cik.Wkx (MCa 1-Rn 3  =0 (4.40)

I This is a fourth order partial differential equation for displacement vector u. Now we apply this

equation to a composite laminate whose micro-structure is composed of two isotropic layers.

For such a case we can write

I = X18ij 4 + A, ((8&Sj + 8a'•) (4.41)

Ci$ = X2ik+ 9(i8y+ 898.0 (4.42)

3 where Xj and p (i = 1,2) are Lame's constants for the respective layers. Introducing equations

(4.41) and (4.42) in (4.40) we get the following for each term:
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(=iýB + (1-rn)4~))Uk = MnP- 1UI~j + IL(kk+ uo))

+ (1-r)(A- 2Uk~ +;1(k + j

=(rn(X + ILI) + (I-rn)(XYW))ukkj + (mit1 + (lrn)Iz2)UjXi (4.43)

+ M~2

3 m rn(A1 & 'up W + 92(8&8jau + k)UkW

3+ (1-rn 2) &j8Pup,) + M L2. 8 !k~jpUi + 8p8jkUkb)

(mI rnj. ( 1-rn m 2) jk.

+ (1~l m 2) Ua3(.4

= ML(11112o) PA&+ n*8(U.A+ 8UjkUj

3 = X2~(8ajUkJ) 3 + inL(uj + 2Uj3+Ua

= =(inX 1+ (1)-r 2)8tk3 + (M* + (1- 92)(%0 + ujaa) (4.45)

I BASE



M2_M (XAaj&4~ + P28~p+ 846J) UkJW

I = Il18cjUp~p33 + E*1(8jpWapu33 + am3

1+ M L8 ajUpjpc3 + -M2 P2(85AU0 pa33 + Upjm 3)

1-rn3  1-rn 3

= (in)- 1 + mý-) 2 )8qjUp~pa33+ (mj 1 + M2 IL2X8jPUcLzPa33 +Uc3 (4.46)

I Substituting (4.43)-(4.46) in (4.40) we obtain

In 2I n 2

+ (M(X1 + 1)+ (I-M)(X2 + R)kj+ (nl+ (l-rn)9)ujjI

L mx+ X2)SjukjkcL -L (n4 + m 2 12)(UajA + Uj= 3 )

3 (M)I1 + -. 2 - X~ pp

1- 12(mill + 1 -rn3  p%(JU,003 + UjaW) =0

Now we introduce the following definitions in the last equation:
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. 12 = m;LI + (l--)X

IL12 = m*1 + (l-m)IL2

112 = MXI + )L- 2

(4.47)

IX 12 = MXI +'_M )2

i-rn 3

912 = mP +-M2 1i2

I The result will be

0 (• 12 + 91)uk + 912u• + Lj {12uja + A1 2(8jctUkJW + u•c 3))

I )-2 l2djuk.kU - 9 12(u'aja3 + ujaa3)

3 XT128ajP. 3 - 3 IP12(8jP~ca.Wa3 + Ujaa33 =0 (4.48)

The above equations are counterparts of the classical equations for linear elasto-static problems

IDin the absence of body forces. We need to write these equations in the expanded form. The

result would be three scalar equations as follows:

I
I
I
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Iall aU )3a2, a a2U,
a ~auoa2 au& aeuji.u +•+ - + -) + +--5W)+

!
2 112 (±a3 +1 a + (±1+ 2 + o3

•j~1 2 ( a•3 Ul •' I - al2  au1  aU2 +au 3 )-L 12  "*1ae

WI- 3 W2 au 2 a 2 ~-*aau 13 u

a3 O 0u 0'0 0'%a a1

+ a2 0 3

T912 - U( +Ca1 *3-1 -* *I), I au2 1 a2u, + 0-a2u 2

i2+ ) 12o -.+9>

I
X2 &e 912

I

6*1 a3 0- a -2 32 jj

I2 j- 2 a2UA1 7; 2- 1j )=O (4.50)

12 + *u3

The second equation will be

I 0BASE
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a )ul -u S2 •u2 •u

13)9+1 ( 
22- 

2 a

-L1 + 12 +'12) ±2 + V2

N2 N O 2 0 U2

I And the third equation is

.•1 €2 3 33 3

~~12+I~' 12% -e ýe? a

I ~2 ~2a~2) U

(+12 + =1 2) + -; ,, (g + -g -)

1 2u a u2 ý 2 a 22 0

I a2 + 912 ' 3 2U3 + 3

a or
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L1 + 12 + -ýL + -L3) + 9. 1 2 (- +
2 au2 3

{maL•/ (l -12) %(2}k - 1 aNIa 1(•+Uja)(.3

l-m33 W22

I1 a2  a2U3  a2U3
{912- + a I= (4.52)

i For future reference we will also calculate caj for static problem in the absence of body

forces. The preceding results are used in conjunction with equation (4.31) which has been

I simplified for such a case and reproduced before the equation (4.39). From (4.45) and (4.46) and

(4.47) we have

Using (4.36) we get

{mcQW + 01-m)cfjLt}Uk.1 = [m)LI + 01--m)X2183kPkJt

+[mgl, + (1-m)gJ2][83k~jt +8318jk]uklt " '128jUkk+ 1•12(U3j +Uj.3) (4.55)

{mccjj) 1 + (I-mn 2 ) c)}Uk.3 = 123 jkaUka3. + 912(83k.ja + •Uj•.l)Uk(.53

m

-- (12+3jUca3 + 9 128j 1u3.u3 (4.56)

Substituting (4.53)-(4.56) in relation for gj we obtain
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aJi = ;L23~k+ A&12(U3j + up3) + L,1Na3+ A2*33

- -8j- [5ju + AIi 2(Uuju + Ujad1

- 42 i8i~ 0  1(j~z~3+U*z) (4.57)

Writing down the components of caj separately we get

VVI~ ~ ~ *5i- nw' n

"a U1  (i2u +1au a2Ul

-iz a2 0 () 2 ~1 = au au
T912 +ea3 (o ae)12~~o e

3 1 -* a 1 aOu1 3? ON I 2 N2a

a a2u allU 1 U -1 (4.58)
3 

,e2

91 2  C +57-) 2i aLu3 - -2 0 -1a2au12)

41 - 2C)I - (-) -)
-)U + T (-'1 -L (12) + =912+)1)aoa 2  e
ao2

1 aul+ 2U )BASE(458
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I • 1 - au2 a~u2  - _ _u

-2 + -± j) + + 1
12(± 2- a2U2 L-4(X12+ =12) -*I o

I •2 )03C--*2 +-NT)1•2 (4.59)

I3L3
q3 ).,2ukk + 2g 12u3,3 + 0 (12XO" ) - 9120%3a + 3.= -U3. AM 3

11 a U 2 )U3  291 ± 12 ClU3 •iI ±2

- .1-( + ±!- )+ 2j.3N-3-* N 0 NI 0 +

all au -)U2  41 A3 •'U3
-- "•-- 912 -ý3 (50' +""2-- 1('2+"-

•,+ - 2 02 -912 (.-2 N

au a3 tae 3 ae1 au2ao41 - a2U3 0-)U3 U 3I i 12(-ýO -- 2)T.31 ~ i T

i3 12 + a ,., ,

i12 (- Xl2 + li.-) - 3 12 •3 (-;2 + - -2) (4.60)

The constitutive relations (4.28) and (4.29) for Bij and Saj for a flat composite are also
I simplified here for a composite laminate whose micro-structure is composed of two isotropic

I layers. Using (4.36) first we simplify different terms of the expressions (4.28) and (4.29)

I [mciý) + 0l-m)Ci$)Uk.1- = m)lI + 0 -m)X2) ijUk~l

i ~ ~+ {mlRl. + 0l-m)9, 2} (bik~ji + 8"•Bjt + Ukt

i ----= X128ij~kk + 9l12(Ui~j + Uj~i) (4.61)
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where (30.47)1.2 ae used.

(Mcaý, m C(ýJUkJ= X128qfkft, + 912(8 ak~jl + 8 *U.

3 = Xi ijqkj, + JL12(1Iaj + Uj~a) (4.62)

(rnc1ý 1 + 1-n) CA-)Uka3 = i128ijAkrUkac3 + IL12( 8ik8jc + 8ia~jk)UIkj3

= 1128ij%60,. + A12(8jaU4UE3 + Si=Uj,&) (4.63)

(MCM(pA+ M ct)U3= X128 amjpUk.P3 + I'12(8 aik5 jp +8 jkk

I=X 128qjUp.p3 + A12(8jpUa1 p3 + Uj3 (4.64)

I Substituting (4.6l)-(4.64) in (4.28) and (4.29) we obtain

Ti =X28jk + I912(Ui~j + Ujj)

+T 2 S12ijUaae3 + 9±12(SjcxUioa3 + kaja (4.65)

5 ~Saxj = X128ajuk~k + J912("czj + Uj.ay)I

+ 1 2 FX2cj pp3+=12( 8 jpukz.p3 + jA(4.66)

I BASE
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5.0 LINEAR CONSTITUTIVE RELATIONS FOR A MULTI-CONSTITUENT

i COMPOSITE

I In this section we assume that the representative micro-structure is composed of n layers

with different constituents. For such a micro-structure we let

lw3i= cPU~j (az12..n 51

where c•o (t = 1,...,n) are material constants in the associated layers. As before the variable 4 is

I designated to change across the micro-structure whose thickness is assumed to be 1ý. It should

be noted that although the micro-structure is composed of n layers, 4 is still supposed to be a

very small number. The range of variation of • in the I layer of the microstructure is from -

ito E where 1 = 1,...,n and to = 0. This convention is adopted due to its agreement with the spe-

cial case of a two-layered micro-structure which was studied before. We further define (n-1)

5 constants ml,... an.- according to the following relations

I l1=mn (=l,...,n-l) (5.2)

3 As a result of this definition the thickness of the l'h layer of the micro-structure is equal to

(mrml--_)1 where I = 1,...,n and m; = 0, m. = 1. The composite stress vector T' and the compo-

I site couple stress S' and other quantities are obviously defined over the whole thickness of the

micro-structure. For example we have

Ti = Tid4 (5.3)

= T*ad4 (5.4)

In order to derive appropriate constitutive relations we make the following definition. Let

I
I BASE
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a-at for 1 <ýý < (Ll< W (1 ,...n) (5.5)

I where at's wre constants and E -0 as noted earlier. The function a is piecewise continuous for

Ie (0, 4) and we can evaluate the following integral

tkad= n kaid .+ l ak+, (k -1) (5.6)

I Using definitions (5.2) we further simplify (5.6)

1- k k'k jad= -1 a[mtk+'-mk'I " = " ag(mck+I-m•V') (k 1-1) (5.7)

where m. = 0 and mna = 1. To simplify the final results in constitutive relations we first notice

3 that the integrals which appear in these equations are the weighted averages of the constitutive

coefficients. So we adopt the following definition

3 I(k)pqr A. I ýk cFPrsd (5.8)

I which by (5.7) is seen to be equal to

i<k)pqn = I I c'(mh! - m, 1) (5.9)

3 We use the same contravariant or covariant index notations for I and c. However, the weighting

number k is always written as a superscript in parentheses. Whenever the covariant components

of constitutive coefficients are used, the layer index (1) is also written as a superscript in

E parentheses. Recall (3.22) which for the present situation can be written as

3T= c7i- g 1 2 g; dt + ! tcij/ g*I2 gjdt (5.10)

I Combining (3.4) and (2.9)3 we obtain

i BASE



i
i 5-3

and (3.5) reads

The first integral in relation (5.10) is simplified using (5.11) and (5.12). We have

:m- •I •jo€'Pi• *I2 gj" -••L I (cilW g* U2 g; + Ci3dgL/ij)d

l fi /2 go (I + tA)cipwddt + g1/2 49ij + I6)ci'idd

Im 2g 2g

+gg

" =glt2 gj{_ (I+.-)ijd +4 -L 4(l + -0)CiP'dd4} (5.13)

=g ,*2g tn 2g

i Now we use definition (5.8) to simplify (5.13). The following expression would be the result

Sl, term in (5.10)- g,12 g.(O•)+ L 1(,I)Lj + (I(1,P,,+ -A I•,-)] (5.14)
2g 2g

I The second integral in (5.10) is also simplified similarly

41•a 5 c g* 2 In d k d1=•2( (ci1 gP* + + 9cg)dg
1 5 (1 S g1P/ig"d*

I ffi g"/2 (I + I6)OPb~gpd• + ( ))4 ciP gjdt

+ 4 g1lt2 (1+ 2. gi3g 3dt
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I

3n 1 2g f ( 2g

which again by using (5.8) is simplified to

2"d term in (5.10) = gi2g j(I,)ijf + A <i)ii + )o< m+4 A )i•j (5.16)

Substituting (5.14) and (5.16) in (5.10) we get the following constitutive relation forTi

U
P1'i= ((15 O)wik + A P1ix+ 4(pINW + A4 p ý]V2g 2g

+ [1(iijla + A 1•ai ~J 2 ihz +~p .- g IO li)] Koa }gl/ gj (5.17)

The expression inside the bracket is obviously the constitutive relation for ij. HenceI
ij = W)ijk + A- I()ijkI + A+ 1P2)ikI/)]V

2g 2g

3- The same steps are followed to derive the constitutive relation for the composite couple

stress Sa. By (3.27) we have

sa =g4 i d g"1 /2 caJlgj*dt + x3 "" gi 2 gj*dt (5.19)

which can be reduced to the following form by exactly using the same procedure

sc,= (ax+ A I(2aX+ 41(2)aN + ALl3*1]I 2g

i+ [I1(2*)JI + _ + $ + gin gj (5.20)
2g 2g
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Subsequently the constitutive relation for SOJ would be

I ((1I+2g 2g+4((

+ P[ 1(2)mj*+A IO$j + xW(1YP+ A lf 4 wP)]K,p (5.21)

For small deformations of a composite with initially flat plies, the foregoing equations are

further simplified. The resulting relations are recorded here:

tUj = eNLW + Pi()Ih 4  (5.22)

saj = 1I)aj"V + I<2)'J* X4 (5.23)

with no distinction between contravariant and covariant components. In terms of displacement

vector u and its gradients these equations can be written as follows:

Sij = li)Uk. + IiMjla)nU (5.24)

S= + lt u 4P3 (5.25)

Using (5.9) the constitutive coefficients are written in the expanded form

In

"1 T. civm - mý-) (5.26)

1 n

3 To recapitulate, di% (r = 1,...,n) are the constitutive coefficients of the micro-structure layers and

mr's (r = 1,...,n-1) are dimensionless constants related to the thicknesses of different layers with

I Bm = and m. = 1.
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If the micro.stnjcture is composed of n isotropic layers, we can wrie (5.26) in terms of the

Lame's constants of various layers. In fact, we have

c $.a) + k)( 8 &Sy + rAA) r = 1,...,n (5.27)

For such a case, the relations (5.24) and (5.25) are written in expanded forms as follows

ij --"ukkij X r)(nf'med) + (ui,+ujj) pj qr)(ml-nfl-I)

+ Z8ffU 7- )llri 1 1 + (WAc+8iaji)

X u!A 3

or

n kn Ui

3i 'iUkk XA~f + (Uij1 +U~j) 7- 1L(r)Ar+ TAjUcLX r(flmr

+ 
n

(u 5+1;a pA~ (5.28)

2r=1 r=

or

n n

Sc~ 2.8jkfk L: k)~Amr2 + (bk~j- + 8uj) u L: g.~rI r~z]

""5Q[8qjuP3 'n XT()rA + ( 8jfUp3 + ujj) 3(rmYr] (5.29)

3 ' r -I ?--I
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where for brevity we have introduced

Amf=mf -m Pql r= l,...n (5.30)

and in the above relations p = 1,2,3.

In order to obtain the complete field equations for a linear elastic composite whose micro-

structures comprise n layers we should substitute the constitutive relations (5.24) and (5.25) in

the equations of motion (2.123) and (2.124). However before that we should obtain appropriate

expressions for po, poz1 and p0A We assume that the micro-structure layers are homogeneous

with densities p.0) (r = 1,...,n) in the reference configuration. Recalling (2.45) and (2.46) we can

write

p9n 1 A= PoG = Po 0G*'/d (5.31)!0
where

*= P p () for 41-1 < < Fr (r=l1,...,n)

and (5.32)

k0=o

Using (4.2), (5.32) and (5.7) in (5.31) we conclude

I +•1 2"2A n AF•n- () r

PO = (1+ )pP:dt = I p(f)Amr + T,4: pA=2  (5.33)
2G3 r_-1 40 ml0

We will proceed similarly to calculate poz1 and poz2 using their definitions for the present situa-

tion. By (2.42) we have

U pg1nz1 = poG' 2zI(

P B• ApSGE 2dt (5.34)
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3V pg1 Gz2 = .& -L 1 2po*0* 112dt (5.35)

Similar to what was done in the derivation of (5.33) we write

U p~~~~~z'~~ = -L L ( - p ~ = ~ ) j
* 2G 2 m-i 6G~ ("s)

I and

pOz2 =(I + - )P~d = -L PO)A4  + P,1)&Ai (5.37)

For a composite with initially flat plies, equations (5.35), (5.36) and (5.37) are reduced

respectively to

SPO p•))Amn (5.38)

poZ 1 P An (5.39)
12

o: PO (5.40)
3 r I

Now we can substitute (5.24), (5.25), (5.38)-(5.40) and (4.23) in (2.123) and (2.124) to

derive the linear equations of motion for a flat composite. The resulting equations are recorded

I below:

n

3I uki + 1Q4Ukap3 + bj 7- po(r)bMr + 'Up3

J = P° + 1•rp+ ••P ij pr)AW (5.41)
i =1 2
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I I3

The appropriate differential equation for the displacement vector u is obtained by eliminat-

E ing aj from equations (5.41) and (5.42). For static problems with no body force these equations

reduce to

I u + 4Ukj3P + = 0 (5.43)

I I3j"j 0 + I4IUk, r4 3 + Oj - IfltUk, - I UkP3 = 0 (5.44)

Eliminating aj between these equations, we get

i 1&uf + Ig.kaP3 + Ilj)ukJ + 1i44.P33 - I ,PkJO - ioUkaP33 =0

l~or

I k.1 + QjUikJP3 - Ijbuk1 d - IgJ44.aP3 = 0 (5.45)

This is a fourth order partial differential equation for the displacement vector u. The constitutive

coefficients I4i (r = 0,1,2) are already written in expanded forms in Eqs. (5.26).

For a composite laminate whose micro-structure is composed of n isotropic layers we use

(5.27) and (5.26) to rewrite (5.45). The result is

nn

£i~duf X(,Am, + (8 0ikj + 84Zj)Ukr T- grAMr

+ 4,n[ijkPik$3 r- l •An 2 + (ik•jS p + kip8jk)Ukp 3 7- I±(rAMn]

n2 r=

t[,Au. , £ AZ' X1,Anm + (8.kj + b6 ,)uW Z 9041•,]
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I1U4~a3 --¼-r)A + (8Uk~jP + 50p5X)uklp 33 T- POAmrJ0

or

nnnI I 1=1

+ M[UjP3 - X~AM? + (8jUU0 + UjP3) T- P9rArnr

2 +- r--u,~~ +

4n[8(~r+L~)ajnJW2: + U,,, + P jr)A1P~flr?

n nI -T jUP&aju3 1j XP')rn?+ (8PaP+ Uj,0 33 ) 7-r mr) (5.46)

I Thee ar thre patialdiffrental euati nsofurhrdroriplcmnvetruadw

+ - n (U U3~3 _ (b~ý) Xr) - P(r)WA4)

IjpO3 12 £ (~r) + ILr))A4 + Uj=w 3 3 7- 1r)AI4)=0 (5.47)

3 r--foIj=r--ge

r- BASE-
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r-I T- I r=

7L eU.C.3 k)A = 0(5.48)
I

3'

I For the special case where n - 2 these equations reduce to the equations (4.50)-(4.52) derived

before for a bi-laminate composite. From (5.44) we can also calculate aj

0j I&M -Ak.- lQALIUk.. + 444.03 -- (5.49)

which for the isotropic case reduces to

n n

I - Tj [Baj',dUkJ) c + (8kj I~ + (Sj 8 ), 8Jj )U

+ -" [S3iSkpUk,p3 l=• +,,•I~24 (&3p~ji +" &3k~jp)Uk'p3r~ • P'(1AI• 2]I n n

1[aj2kpk2kr)(s) + (8ojAJP +1r (5.51)

and fqator ns (53 0 w e o wtittn i w eaaest.Fr w

+ nn n

Sn n7- T [ WAM••' + •(800if + 8Q.jI*k• 7- P•'A?] (.0
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1 n

4nn

4ýu~W I w~mý(5.52)

For the special case of a laminate with two layer micro-strucure (n=2) these equations reduce to

(4.58)-(4.60).
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I 6.0 THERMOMECHANICAL THEORY OF COMPOSITE LAMINATES

U In order to develop a thermo-mechanical theory for the composite laminates, we begin by

writing down the local balance of energy and the Clausius-Duhem inequality for the kth

representative micro-structure. First we introduce the following additional five quantities which

3 we associate with a motion of the micro-structure:

3 The specific internal energy e" = e'(0a,0M),4,t)

The heat flux vector q* = q*(0,03(k),9,t)

The heat supply or heat absorption r" = r*(0a,0-•,4,t)U
The specific entropy f!* = il*(0".03(k),4,t) and,I
The local temperature 0 = 0*(0a,03k),4,t) which is assumed to be always positive. The

3 equation for the local balance of energy - the first law of thermodynamics - can be written in

the following formII
pr* -p• +tyji - q k = 0 (6.1)

where p* is the density of the micro-structure, q*k and yij are defined by

I
qqk° * 1 .* 62

q q *k , Yij = gij (6.2)

and covariant differentiation is performed with repsect to the metric tensor gii of the micro-

I structure. Recalling the relations

| ."

gi =v,

gij j gi "gj (6.3)

I *AijgJ*
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I We can write

I 1 1 +V u v (6.4)

I Using (6.3)3 and the symmetry of *i, we can write

• *ijj* I= .. (V*. -'g +V" '*'iJg')

1 ( . a-• i+ !. 1-..j)_g.-1.i

(j- •g j gVji (6.5)

As for the divergence of the heat flux vector, we have

divq q*kk (g*:/I q*k) (6.6)

Introducing the results (6.5) and (6.6) in (6.1), we can write the local energy equation in the fol-

3 lowing alternative form

3 pr* - p" + g-2[T'• v,r - (glg-qk)[] .10 (6.7)

I The energy equation can also be written in terms of the Helmholtz free energy function defined

byI
V=E =" -00"I 0 (6.8)

I The Clausius-Duhem inequality as a statement for second law of thermodynamics has the fol-

lowing local form for the representative micro-structure

p*0'ni" - p'r* + O*g*'- 1 2( O" 4)• 0 (6.9)

I By combining (6.9) and (6.1) and using (6.6) we have the inequality
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1*en q o 0 (6.10)

which in terms of the Helmholtz free energy V defined in (6.8) becomesm
m( + +,+ 4-I q 2!~ 0 (6.11)

Now for elastic materials the constitutive relations for Helmholtz free energy, the specific

entropy and the stress tensor can be expressed in the following forms

06(,00) (6.12)

I S.- W (6.13)ae*

iJ= =* PO*a (6.14)

where the partial derivative with respect to the symmetric tensor Yij is understood to have the fol-

lowing symmetric form

2 I "* "f*

The constitutive relation for the heat flux vector has the form

qk = 4*k(_f,'eS) (6.15)

mand the response function (k in the light of the Clausius-Duhem inequality is seen to be res-

I tricted by the inequality

m 2 * 0 (6.16)

3 With the help of (6.13) and (6.14) the energy equation (6.1) is reduced to the following

formm BASE



I
6-4

pO r - pOr6-4 = 0 (6.17)

I where we have used the definition (6.8) in order to calculate e* in terms of V " and then used the

i relations (6.13) and (6.14) to further simplify the energy equation. It should be recalled that the

argument of different functions in the energy equation (6.17) is (0a,0"•),ý,t) and this equation is3 written for each and every representative element (k = 1,2,...,n) which repeats itself in our model

and n -+ --. For a bi-laminate representative micro-structure with thickness 42 we introduce the

I following composite quantities. These relations can be generalized for a wulti-constituent

i micro-structure without any difficulty (see definitions 5.3 and 5.4)

(6.18)

pg91 rj 4 J p~g'r 2 r. dI

I gl/2 qiA g,/24d

(6.19)

I"q~x= -' f g*'l2q~ut dt

3 p9 *g*Jplf2z md4 (m=0,1,2) (6.20)

3 We further assume that the variation of temperature 0 across the micro-structure is a linear

function of 4, henceI
e)*(oa'o3(k),,t) = ¢o(Oa,O3(k),t) + t€I(O(, O3(k),t) (6.21)

I In order to derive the appropriate form of the energy equation for the composite laminate, first

IEwe write (6.17) in the following form
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p* r* - (g'lI2q*k). = p*g1* 2Ni (6.22)

Uwhich after using (6.21) reduces to

I p*gjIY - (g"lfq*k).k = p*gl.(N o + •*i) (6.23)

I Now divide (6.23) by 42 and integrate with respect to 4 from 0 to 42, the result isLi 16
pIJpg'2r~dk- " (g*li 2qOa).ad4- "(g' qJ')dt

I
I '2 p*g*l'fl1dt + T o p*gWT/ dt (6.24)

Each term in the above equation can be written in terms of the composite quantities introduced

in (6.18)-(6.20) except the third term which is the difference between the values of g"1/2 q*3

I above and below the representative element divided by its thickness 42, namely

I " "2 Zo (g*1r2q'3)d4 = _. [g112q' 3(ea,'3 (k+l),t)- g*Iq*3(ea'03()'t)]

I Now we assume the existence of the continuous function h(Oa,03,t) which coincides with

q*3(0a,03(k),t) at 03 = 0(k), and further approximate the right side of the above equation as the

gradient of this function multiplied by g')2 in the 03 direction, i.e., a(g'12 h)903. As a result,

I (6.24) can be written as

1 _ (g-I2qa)'a (g'12 h) = pg'1 2( 0Týo + i1h) (6.25)

U In writing (6.25) we have also made use of the balance of mass equation.

3 Next we multiply (6.23) by 4, integrate with respect to 4 from 0 to 42 and divide it by 42 to

I get

I BASE



I
6-6

I

- 1  - J','"•' o g142, 3  ,•.•>

52 ' p~g1* 2iN%( + 4ý1)dt (6.26)

I Using integration by part, the third term on the left-hand side of (6.26) can be written as

1i ) l•g~/2q,3fa 1•

4I (g*l2q*3)d4 = _ gE112qo - . 2J g'q 3 d = gin (h-q3) (6.27)

I which in writing the last term we have used (6.19), and the definition of h given above. Using

I this result together with the relations (6.18)2, (6.19)2 and (6.20) we can write (6.26) in the fol-

lowing formI
pg91 2r, - (glflqu ). - gw(h-q 3) = pgt 2(%0o1 + (6.28)

To determine the appropriate form of constraints on the composite heat flux vectors, first

E we write the Clausius-Duhem inequality (6.16) in the following form

3 g.fl2 if.O;o 0

I which by (6.21) reduces to

g.1 ,'2 471(%o'. + + g*l2 4*3ýl :g 0 (6.29)

Next we divide (6.29) by 42 and integrate with respect to t from 0 to 42 which after using (6.19)

I can be written as

i 9, + glfl 410*'.a + gin e1 : 0

II or

3 qaza + qj 1la4 + q3 j1 5 0 (6.30)
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which is the appropriate form of Clausius-Duhem inequality for the elastic composite laminates.

When the rate of heat supply or absorption is zero (r = rI = 0) the energy equations for the

composite reduce to

3 (g 2 q4).a + •-2 (g'/2 h) + p gn (%0o + ol I) = 0 (6.31)

! (gfl2 q 1).a + g1i2 (h-q 3 ) + p g1 z (00 'oI + Ci112) = 0 (6.32)

For small deformations of composites with initially fiat plies the energy equations (6.31) and

(6.32) further reduce to

a- 0 ) 3(6.33)

Sqa + h -q 3 + p( 0 ý1 + O, 12) = 0

where obviously no distinction should be made between contravariant and covariant components

I of heat flux vectors.

3- The derivation of energy equations (6.25)-(6.28) and the Clausius-Duhem inequality (6.30)

for the composite laminates is not affected by the number of layers (or constituents) in the

representative micro-structure. The only necessary modification in the case of a multi-

I constituent composite is the replacement of ý2 by e in definitions (6.18)-(6.20). Here F is the

thickness of the representative element which is supposed to consist of n layers. Of course 1 is

still supposed to be a very small number.

To recapitulate, for a composite whose micro-structure is composed of n layers with a total

thickness of E we have the following relations for energy balance and the Clausius-Duhem ine-I
quality

pr- g-i/2[(g2qa).+ -A- (gi'2 h)] = p(%0 o+1 + 1)

I BASE



pr, + q3
-h - g1'2(g1 '2qo')1 = + #O 1)I)+(6.34)

qaU~ q la*,5 a+qf'4 kq3 0

I ~where the composite quantities mre defined as follows

I pg1~lJr = _ gL 2 d

* ~pg",r1 = JP~g*'V4 dt

IPg' 27(m) =- Ip*g*ln*4d4 (m =0,1,2) (6.35)

4n 0

I"' *'*d
91/241z 1 oý~td

I g 1 ~ glBASEd



7.0 CONSTITUTIVE RELATIONS FOR LINEAR THERMO-ELASTICITY

For a composite laminate whose w'icro-structur is composed of n layers with different

linear thermo-elastic constituents, we recall the following constitutive equations for the stress

tensor *ij, entropy T11 and the heat flux vector q"

c c c &)e (7.1)

=n*)(a) cj-()y1ji + (p*C)(a)O" (7.2)

=() ---- -a)Oj (7.3)

where ciaf), ca), c(t) and kqj) (a = 1,2,...,n) are constants in the associated layers. Moreover, we

have the following symmetries

19 = c = C C) =c•Oc (7.4)

c(&) = ce.) (7.5)

Now we proceed to calculate the appropriate constitutive relations for composite stress vec-

tor Ti, composite couple stress SV, composite entropy 11(m) (m = 0,1,2), and composite heatflux

vectors q' and q'. The contribution of the first part of (7.1) to the constitutive relations for Ti

and S' (and consequently 'ij and Saj) has already been calculated (see section 5). Therefore we

I need to find out the effect of the second part of (7.1) in the constitutive relations for T' and Sa.

Similar to what was done in section 5 we adopt the following definitions for the weighted aver-

I ages of various quantities

j(k)ij " !kciJ)dt (7.6)

~flI f k(p*c)(a)d4 (7.7)
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I Now recalling (5.11), (5.12), (6.2 1) and (7.6) we can write

~JCp g~gd.- l g~lf2 jd

*+ tg J 2 (Cipg; +CO3t

1OW9 -ý4-)c'~dt + *0 4gi ) c ~i

0 2g 2g

+ 0og'f2 93 ~(+ + tc'3 *1g
tn 2g )idk + gP4( 2g

1 4n i ~2g 4n 2

+00 g"2 gj(~ -L t(1+ -A)c'jdt+ 4 4 J (10 + 2g )'P4

g in gi W~Jo~j + 4-J1(j + 4~(1)I + -L j(N)

2g 2g

f~g~jl~A _j(2)i+4j 2+ A j03)iP))

+ ~gflg((lI+2g +2g(79
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By combining the results (7.9) and (5.17) we can obtain the response function for the com-

posite stress vector T'. As before if we disregard the factor gb2 gi, what remains is the constitu-

tive relation for U which is recrded below

T1J= (J(O)W+A flxxA 1 (ljid AW A ý2x ))yW

2g )4cw k+ 2g
+ I() + A- I( xib + *pI( w + A•gl'i•}k

2S 2g

u2g2&

- * o +A ffuj + 4(j(2) + A j(3xp)} (7.10)

Similar steps are followed to find the constitutive equations for 5" and Smj. The contribution of

the thermal term is

J •ojr" g1j2hjdt= og1 2 gj (JhJ+ A j(2)aj + 4" (2 P+A J(3)4))

+ 1 gM gj (J(2)aJ "-)J +4 (J3( )+ f "'P+Aj(4)c)) (7.11)
2g 2g (.1

Again combining (7.11) and (5.20) we find the constitutive relation for SO. Dropping the com-

mon factor gV2 gj would result in the constitutive relation for SaJ which is recorded below.

r
2g 2g

I ~ ~~+ x0p(I2)aijP+ A~ 1P)"i'P+ ~4 P(I0)'V + _L J(4)cA))

- j(l)czi + _A_ jf2j +4~(J.lIcxt + A J(3 w1))I2g 2g
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_*,1 fi*+A Lj(3)Iqi+4(j(3)P+ A (4)OP)) -2I ~2g 2g (.2

The next step is to find the constitutive relation for the specific entropies ?f(.) (m = 0,1,2).

l We calculate the contribution of each term of the relation (7.2) separately. By (6.35)3 we haveI

1) ( 7.1

j ~~F k (p (5y~ ~~ c)(,)O g*4/4 (.13

Since g*12 = g12 (I + IA-) we can write the first part of (7.13) as

j Sncc~ g f .2g

I " " m'' = ~ I (i+ g2gd d (7.14)
o 4no2

which by (2.31)-(2.34) reduces to

Io
E. (1g n+ T9

g1/2 {yj[j(m)ij + -L j(m+l)ij j (m+l)iP +- Aj(m+2)i } (7.15)

2g 2g (.5

I The second part of (7.13), by (6.21) and (7.7), is written as

I 1o

- T + & )(p'>())dr

4n o= 2g

+ I l+1( +C)(a)d

,A E2g
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I =* 0 gll (K<w)

I + A K(m"}) +,+ g'i +',+ 2-A K(+2 ,) (7.16)

2g 2

I Substituting (7.15) and (7.16) in (7.13) we obtain

pglf1(mi) = g12 {,.J(m)1j + A jtm+lNj)) + gI J2 fl(ii + A
-~U 2g 2g

I g, 2 (K(m) + _A (m+)) + #1 gi2 (K(m+l) + A K~"+2 )

or

P~~1(m (j(m)ij + _A_ jm+l1ii) + r -A- Jm+24)i
I (m) - ij 2g 2g

io+ , 0 (K(m) + A K") + O1(K+ +D + A) A'g ) (nm = 0,1,2) (7.17)

We start with (6.35)4 to find the constitutive relation for qi. Substituting from (7.3) in (6.35)4 we

get

I g q= g 1 2q*" d 2 *.. k~ )g0ldd
4no om

-- ( +L 1)(1-. 2gk (7.18)

By (6.21)

0,; = o. + (7.19)

0.*3 -(7.20)
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Noting these results we simplify (7.18). Hence

g9lql = - gin! 0 + )A + + 4AL)d4-

4n 2g

= /- (L (+ ("AO)t )+'40d +- lA + A

2g 2g

+ 0 + -P•4 L'1 )id (7.21)

Using (7.8) we get

gt qia= g~t2 {oo.p[L(OV + _L LOV•] + ýI.P[LOA~P + A •gip

~A

+J[L(°)a + -A- L(10]}

~ J (1 + 2g

or

qi=_(L9O) + -A LOV)ýo.O - WiP+ A L(2441.0

-(LW° + "_L L(I•)O) (7.22)

Finally we use (6.35)5 to derive the constitutive equation for qlc. Similar to the above develop-

menlt, we write

1! 124 +./ kiaJ0;dý
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t( +-ý-kstj+to~~ (7.23)

2g 2g

I which by (7.8) reduces to

qu = "(L(,*P' + -L L(2)ao#°" - (L2)4 + A"Lcw .P - -A L(2•)•41  (7.24)
2g 2g 2g

This concludes our derivation of linear thenno-elastic constitutive relations for composite lam-

inates.

For small deformations of a composite with initially flat plies the foregoing equations arm

I simplified to the following constitutive relations:

3 'ij = Iiwuk + Ii'JIud, - Ji]'O- J414 (7.25)

I3SaJ = _ I•luLp3 - - Jc( 2)ý (7.26)

3 P'Tl(m) = JijS ) ujJ i + ' 1ui3 + K(m),° +K(m+l),l (m=0,1,2) (7.27)

g h = -84p 4- Li4)*.0 - 401(7.28)

1q = - L (2)o , ,,- - L(I)O (7.29)

The constitutive coefficients 1(0), V(1) and 1(2) have aledy been calculated and recorded in equa-

3 tions (5.26). As for the other constitutive coefficients we use the results of section 5. Compar-

ing definitions (7.6)-(7.8) with (5.8) and using the results (5.4) and (5.30) we can write

J(kNj = *_D j 4[r~

3 '-T (7.30)

K(k)= I •! (Pc)(r)Amrnk+l (7.31)

ILOk~iJ = _"_Le •1 k 8, Arý'(7.32)1 k+l t= 1
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It should be noted that kq in equation (7.32) are the coefficients of thermal conductivity of dif-

I ferent layers of the representative micro-structure and are not to be confused with the superscript

k which assumes non-negative integer values.I
If the micro-structure is composed of isotropic layers, the coefficients of thermal stress c•)

I and thermal conductivity k&j can be written in terms of only one constant for each layer. For

such case we write

CI€) = Pr)j (7.33)

mk-it) = k(r)8 ij (7.34)

Taking note of these relations and relations (7.30) and (7.32) we obtain

n!U
1j =

"1 2 'J m~Al r

U(37 6

Ijj,(3) = L~n~j~r

~4)=

)=8 k(r^mr

U ~21~& k~rmr ~(7.36)

I Consequently the constitutive equations (7.25)-(7.29) reduce

3 BASE



2 ~(."8ý +3j (7.37)

3 m

+ (8jPu.P3 + uj.,~. grw&4) (7.38)

Pfl(o) Y= 1j N(rUii + (P C)(r)oo]l~Xr

+I
2 lT 0£ )PP + (PnM..ýJAIn (7.39)

2 + r'(i1J-

y-I (~r)UP.03 + (PC(r)OdAfl? (7.40)

3 P11(2) T-?I [P(r)ujij + (P*C)(,)*oJAnflh

4 T-I ()PP + (7.41))UA
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q o .z k~rAtflr*•2.,. k(•,l (7.42)
m

q3  _ 1 1 kAm, (7.43)

*L4i% ZkrA? 11a 1k(rA4fl (7.44)

3 In relation (7.44), a is written as a superscript only for convenience and does not signify the con-

travariant position.I
The linear equations of motion and balance of energy for a composite with initially flat

I plies are derived by substituting (7.25)-(7.29) in (2.123), (2.124) and (6.33). Using the results

I (5.41) and (5.42) in conjunction with (7.25) and (7.26) we have the following equations of

motion in linear thermo-clastic theory

I
buk,., + I4tj,.U,,_3 - I(0 ,_,- Ij,., + bj, po(r) •,+ i; ..+

n 
1 

r

uj 3 P(r)Am r + 0 2 6j3 n

3Qbuk + c2?U0o3 - ,(Oioz- 4(2'Oka + Oj- lj•f,,

I - Ilj.u*p3 + + J+'Nl + cj I po WAnr

2I. ) + r- - p1) n-s

i The energy equations when the rate of heat supply or absorption is zero are recorded in relations

I (6.33) for small deformations of thermo-elastic composites with initially flat plies. Substituting

the constitutive relations (7.27)-(7.29) in (6.33) we find the following coupled differential equa-

I tdons for displacement and temperture fields
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U (J(°+ ,3 l) + *bo2j. + + (*,(O) +I
¢# U+, • +_ (.-D -t -q,..I=S(7.47)

+,J1 )f %0),) + #*0 K~ + 2)j

+ (*o• ) + , + h + L#,.,p + L•#*. + LW•,1

-IJo.L. - L Ia•p - 14Na= (7.48)

I For static problems in the absence of body force and heat supply, the foregoing equations

I are further reduced to

aiuk.fi~~t la + ~ ~ z j(1)k• -- Jc(jvoc a- aj.(4. Wla1 =j 0 (7.49)

I IukEJjMJ~kCa + iUoW 3  - J6j)4loa+ - aj 4 1p + Od4- lPýIukl

• . O + Iju * +- J)" =0 (7.50)

W_ (7.51)

h + 14)4op + L4N.)Pip + L4, 1 - L 40 10- l. 0, - La)•b4.a = 0 (7.52)

Similar to what was done previously in order to find a relation between the director dis-

I placement and !he gradient of displacement vector, we enforce the continuity of the temperature

field across two adjacent micro-structures to derive an analogous relation between *o and ý,

defined in equation (6.21). In order that the temperature field be continuous on the common sur-

face between kth and (k+l)i micro-structures we should have

3 e*(e•,ec'+•6,o,t) = e*(k+,I',Lt (7.53)

S Now by (6.21) we have
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9e3(e•,em÷S), = *,(eOe 30'÷,t) (7.54)

e*(eP,O-N),,t) = *o(eqe),t) + A(Op~e-,Ot) (7.55)

I Substituting from (7.54) and (7.55) in (7.53) we get

I oeP e.•+I),t) = ,ea,9 ),t) + tf(9m,e-•),t)

3 *i(OaO'•),) = . �(*{(eI030+l.t) - #°(9aR03•)t)) (7.56)

I By smoothing assumptions and noting the smallness of 4 we approximate the right-hand side of

(7.56) as the gradient of ý0 in the 0 direction. So we obtainI
*I(Oa,&,3t) = 0(O4,0,I) (7.57)

I This conclusion is used in various field equations. In particular, equation (7.49)-(7.52) reduce to

Ik +I1Z+ Ijpu0)k, _- Ja3)k. - + j..3 = 0 (7.58)
Uk•I•/UL,~p3 " 4~4" t 0/ ,ap3 Jaj v+G

(IU ~ +2 -- j qqa-- aj Oka3 +Cj -I4Uj•

-|I.0 3 + + 0 (7.59)

h,3 - L•4,ap - Ia(R0.aP3 - 124o.a3 = 0 (7.60)

h + Lg)ýo.p + .•4•%op 3 + 143%0.3 - LoW%.ap3 - 14%.Q3 = 0 (7.61)

i Eliminating aj between (7.58) and (7.59), and h between (7.60) and (7.61) we find the following

coupled differential equations for displacement and temperature fields. Since we are investigat-

ing the static problems in the present derivation the equation for temperature, i.e., the equation

U resulting from the energy equations is independent of the displacement field. Recalling (5.45),
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the displacement equation becomesI
15 jkO) + I Ukj3 - -I . .- 194UkW3

- ai 9,.i - J + vo * + J.•a, 0. = 0 (7.62)

I and the tmperature equation by (7.60) and (7.61) is

] L4i-oCw-ij + (Laa - Lj,))oa33 - Lacka$33 = 0 (7.63)

U Having determined the displacement and the temperature fields, the interlaminar sutsses oj and

heat flux h can be determined from (7.59) and (7.61), respectively. The results areU
mo, + I4)_•UkP 3 - j6Ja -444a- pu3

+J>%_ +a'z>,, J.P),, -J-)o.3 (7.64)

4(oaP + L ria P +, qWj -3jkO- 14)%A3 L43 %.3

1-40O.aP + L4O0%iAP + (L,) - IA)O0.%3 - IjO)j (7.65)

I
I
m
m
I
m
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I 8.0 LINEAR THEORY OF INITIALLY CYLINDRICAL LAMINATES

I For an initially cylindrical laminate, we choose the usual cylindrical coordinates (r,0,z)

which are related to the coordinates (01,02,0) according to the following relations

01=0 , 02 =z , 03r (8.1)

The choice of coordinate r for 0 direction is natural, since the cylindrical laminates are piled up

in r direction. The metric tensor Gij and its conjugate Gi and G - det(Gij) are given by the fol-

I lowing relations

S(Gift-- 1 0 , (G'j)= 0 1 (8.2)

r00 0 10 0 (.

SG = det(GiP) = r2  (8.3)

I Since we are working within the realm of linear theory, the reference metric tensor Gij is

I appropriate for calculating the covariant derivatives of various quantities. We further recall if vi

and Tij are covariant components of arbitrary vectors and tensors, their physical components

I Vai> and T•, are given by

Vv. 1 = T (no sum) (8.4)VG iT'j> ijiý

and in terms of covariant components

3 vd> =v~~ ,i-G T.,j> =T14i Nr ~jj 6 (no sum) (8.5)

I For the cylindrical coordinates defined in (8.1), the non-vanishing Christoffel symbols of first

and second kind are as follows:

[13,1]= [31,1]r , [11,3]=-r (8.6)

I BASE



I
8-2

(1 1} ff 3) = (3 1 1)13 1) - (8.7)!r
For the subsequent analysis we also need an expression for the quantity A defined in (2.14):

I2. ]o r2 00

A= 0 1 0 + 000= 2r (8.8)

This quantity relates the determinants of the metric tensors of micro- and macro-structures

through relation (2.13).I
8.1 Relative Kinematic MeasuresI

The relative kinematic measuresyij and r., were given by (2.118) which for cylindrical

I coordinates since Da. = Ga3 = 0, by (2.103) and (8.2), are simplified to

I =j = - (Ui j + Uj i) (8.9)

I LP=ANUjia+8a1P , 1C~a== Ic (8.10)

I In writing the above relations, we have also used the resuts (4.22) and (2.30) while noting in

cylindrical coordinates we can write

Af= (33 a}0

By straightforward calculations, covariant derivatives of displacement vector u and director dis-

I placement 8 are found and substituted in (8.9) and (8.10) in order to obtain the covariant com-

ponents of the relative kinematic measures. These results together with physical components of

I each tensor are recorded below:

I u 1a'e U
YI 

B=AS+rU3 E r
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i~±! +, =12 )_ , ya=• +;2 au 2  rN

- (2 + U , (8.12)

i +U2 _O)U3  laU _a_2 5r-7+W ) - Yrz=- Haý + -j)

aU3

i a a=+ a ia g 2

K12 3 Cl, =- • L, ) , )+z -= a2%

& r a(z7T)

2I K2 a = ( ±!I + Z=
r a o-r r c -a

IK2 eU2 naUII

eU3 U 2rOV

_31 T ,- 1- 0

II aza I Car,

I The equation for balance of mass is also obtained by using (2.121) and (2.122). The result is as

* follows

po=P(l + (1 + au.+
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(8.14)

r aG az 8r r

I 8.2 Linearized field equations

5 These equations have already been derived for a general composite laminate and are

recorded in (2.123)-(2.125). In cylindrical coordinates and in terms of physical components of

I different tensors, these equations are reduced to the following forms

I + 2! + -!! + p 0bg = po(dii+ z18)

S + - + - - + pb= po( (8.15)

r aF + -T r rrH and

'le + a" e + L-r + Ler - ýre + POce = P°(z Iu4 + Z24e)

I ae z r r

I_ as% 8sZ7 OZ-a OZ=P(Z%+Z8)(.6r az ' az"+- '+- - +icr=p °(zii+z 28)r(8.16)

Ias* C. see + F_ r a0 ~++az +Po -C n +po o(Z]iir+ i 8r)

and 
r Z r r

1
ICZO- TZ=r sez

e - = I sO (8.17)
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In= 'Ezr

As noted earlier in (1.125) the composite stress O is not in general symmetric and in particular

in cylindrical coordinates the asymmetry is represented by equations (8.17).

8.3 Constitutive relations

We assume that the representative micro-structure of the initially cylindrical composite is

composed of n layers with different linear constitution. The results developed in section 5 are

I used to derive the appropriate constitutive relations. For the present cas it is noted that

iA _ 1 (.18)

2-G= r

and the only non-vanishing component of A4 by noting (8.7) is

I At -= 3 1 1 - (8.19)

r

I Using these results, we simplify (5.18) and (5.21) and derive the following contravariant forms

for the constitutive relations in cylindrical coordinatesI
,ýI= (O~lkl+ . jQI(Ikl +1_ 1(2)iid).4 + (11il +3 2_ 12)illcz + _L 1O~"~)W,, (8.20)

I r r

I •, = (i(O)i3rk + _1 1 + (lI.' + ± 1i c (8.22)

r r

S 1al=kIO Jr + r2 Ir 2)a~ + 1l~lala+(()l r I)Kj+"•II(• pwc (8.23)

T- = (lt) + + _L (i(2) + + _. i0<2X')1c, (8.24)
r r
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3 =(1 1)z~k +± + (I(2)oM+ _L 10)0NP) (8.25)

where the covariant components of the relative kinematic measures yi, and tj, have already been

I recorded in (8.12). The composite constitutive coefficients IOOM depend on the material

behavior of every constituent of the composite laminte. For the special case where the micro-

structure is composed of n isotropic layers with different elastic constants, we can write

IC = AG O + pO(GFGI + GPGq') (8.26)

I where X,) and g(, (I = 1,...,n) are the Lame's constants of each layer in the micro-sucture. By

(8.2) the non-vanishing constitutive coefficients are as follows:

I C111 = -L (). + 2g)

I Cn=122=

c1 13 3 =

r2

C213 = X (8.27)

3C33 = ; + 2g

3 C2323 = g

I" C1313 = "

3 C1212 =-

r2

I where subscript (1) is dropped for simplicity. It should be recalled that following symmetries of
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the constitutive coefficients must be remembered when the expressions involving the constitu-

I tive coefficients are expanded

I ck = CO = Ck = dlj (8.28)

I By (5.9) the non-zero components of the composite constitutive coefficients have the same

superscript as (8.27). Substituting froa (8.27) in (5.9) and using the results in (8.20)-(8.25) we

I find the following constitutive relations for the physical components of the composite stesses

and composite stress couples. The summations in these relations extend over the micro-saucture

froml Iltol-n

Am? + 2 Am?)I

r 3r2r9 (X + ..+,,, . ýj •,+ + 2q AM+ + U &M,4)

I
AM2+ U Am Am) (8.29)

2 Z 3jr- 4&? r2 A4

=AM + e./ M3) + (r• (8.30)
r 3r2I ,.=,l, ,3,+,+ -3- .l

ý19 = 2 Ye •A~m, + Q+ r (8.31)
If ~ lA, m4

2"3r 42

I BASE



,; yz1 XM ýA? ze+V)1 L 0A?+-ýAý (8.32)

Izz YwiY,,I: )A~m+ P Am) + . 1 (4+ 2pX~m + ný)(8.33)I +~m2r )++XA2r~in~

2 3r 2 3r

~ni~j~4)+Kn~(11An,? +- Am?) 8.4

%z2yzT. ZLX+ 11Am?2) +ic(~ I~ y (8.34)

,t yrg~,+-jA1)+10 "ý n?+ý LAM?) (8.35)
2r 2 3r

2rA? UM3 (8.37)

2~ 3r(83r

In IYOYzYr :XAR+-!A? fIPA,+I

2 3r 1 + ) ( 2  (.9

+ S20 p)(lm +~T~ +n -L e4r2

3 BASEr
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*wl +K PAl-L .Am? i 5Amf - ),m

s1 = 2,O. t 2, +,( A,,? + a Am )+ (8.40)

3 4r

Sz = tnl 1(I + 2L 1 )(jLMi2+.j A4l) (8.41)

I
2 3r

+ j zz(4+ 2 44)(1- AMi +-_jAMnf)
3 4r

S2y z + = )• + U Am? + mf) (8.42)

U 2Pm T A +.A.,,) + V .., Ao(m (8.43)2 3r 3 4r

I Using (5.33), (5.36) and (5.37), the composite mass density p0 and the composite mass

moments p~z' and p~z2 which appear in the equations of motion arm also calculated for an ini-

tially cylindrical laminate

i

PO ZPOAMI + -1 EP.<AM? (8.44)

PO Lt orM2 +-ý :p' A (8.45)

II + (8.46)

I BASE
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M4 Energy equations and constitutive relations in linear the.naoreasidty

Energy equations (6.34)1.2 in the absence of heat supply or heat absorption reduce to the

I following forms when written in the cylindrical coordinates (8.1)

+ L!qL _ la~rh) +P(OO++
r N & r T1o ) = 0 (8.47)

1 1-+ + h - qr + po(*o1  + #1* (8.48)

I where qej,aj are the physical components of heat flux vector for the component laminate;

I qlqlz are the physical components of the composite heat flux moment, and other quantities

have the same meaning as section 6. The constitutive relations for various composite quantities

I in thermoelasticity can be written with reference to the development in section 7. The mechani-

cal parts of the constitutive equations for composite stress and stress moments were derived in

section 8.3. Therefore in what follows we record the thermal contributions to these quantities.

I The complete constitutive relations in thermo-mechanical theory is obviously obtained by super-

imposing these distinct parts.I
From (7.10) we have

'ij(thermal) = ..•o j() 1)ij + 4(f(l)iP + _1 j(2)ip)) (8.49)
r r

{(j( Nj + _L j(2Nj + q (j(2)ip + _L j()iP

i Using (8.19) this reduces to

i il = _ýojj(0)i] + -2 jow~i + I1ml)-ý (j(l)n + . j(2), +1 O,) (.0
r r2 -t{Ji +-r +r2jOi (.0

iC = ..#o[j(o•2 + -L ()1j- ý,[.,1-2 + _ T<2N2] (8.51)
r r

I SBASE
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O =._o[j00 + .1 jQI _ [j I- + L j2] (8.52)

3r r

where the word themal is dropped for birevity. Similarly from (7.12) we find the themal contri-

3 butions to stress moments as follows:

s- =J'o)J 1 + I J(3)m) - 1 (J2 1 + -1 j3 + -L J(4'a) (8.53)

0r rI s~ =--olx + 2± j(~lt•j a ~.~( + ± J0~2J (8.54)

sI = --4J(l< + _ jCZ)3] - + ± Jj3Wl (8.55)3 r r

The constitutive relations for composite entropy and its moments Tlm, heat flux vector q and its

I moment q, are also derived from equations (7.17), (7.22) and (7.24). Using (8.18) we have

!Ponlm - .iJ[m)ii + r + T 4.)P

1 jI +szj] + yA[j(p + + L j)P+2zp]

1 + o[m)+ ± K~"u+D] + tlKmD+ 1 K~u 2 •] (mn = 0,1,2) (8.56)r r

S= _L0 + rL ]o°± - + 1- l( .p _ -[L(°•3 + L L¢•1, 1  (8.57)

I rr r

qI -[L(04 + r L(2)mOa.P - [L.(2)U + r L(3*P]•p

[LO)- 3 + L L(2)u)1% (8.58)

t where the thermal constitutive coefficients j'k)ij K(k) and L(k)tj for the composite laminate are

given in C7.6)-(7.2) and calculated in expanded form in (7.30)-(7.32).

I If the micro-structure is composed of isotropic layers the coefficients of thermal stress and

I thermal conductivity of each layer can be represented in terms of only one constant For the

I BASE
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present case of cylindrical laminates we can write

C~G'~ l~,.n) (8.59)

k = G-lik (8.60)

I Substituting ftom (8.59) and (8.60) in (7.30) and (7.32) we have

Sj = (8.61)

I ~k)2=*33= I!-L (AM+ (8.62)

!k+l mk+l (8.63)

"" k( 1 = k;oam l (8.64)

I These are the only non-vanishing components of the composite thermal coefficients and Kk)'s

are scalar quantities independent of the coordinate system. Substituting from (8.61) and (8.62)

I in (8.50)-(8.55) we get the following contributions to the thermal parts of the composite stress

tensors and moments:I

owthernd a)-*0 F, OAm +- 4n M, + 4

+ 2U
2p,(ý M 2• AM1 + _ n:M) (8.65)

I
%(thermal) = ;(thermal) = 0 (8.66)

i(thermal) = ,z(thermal) = 0 (8.67)

T*(thermal) = cafEthermal) = 0 (8.68)

n BASE
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Am? + Am?) (8.69)

I ~fl 2~ 3r4

I 5f2

Su~othernal) = *op,( Am? t Am?)

PA3 A 4+Tr

The thermal contributions to other components of S is zero. As for the entropy and its moments,

rn heat flux and its moment, we substitute from (8.61)-(8.64) in (8.56)-(8.58) and get the following

results

+(K.+p~- Am,2)

POTl(O) = (Ye + y.. + Y,)7. 1:-- pA ul + _ 'r •n,2)

+ +* 0 1(PcOAAmi+ ja W) + *1:(pc)A~-ý!Am? + j-ýAmi3 ) (8.72)

3 4r

I BASE
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+g1:(Ot&4+4 lt (8.73)

3 4r

3 4c

U ~~~~+ *1 I(PO~i-j Am? + !ý- Am4) (.4

+. #I IX.).! AM2 + 43)4 (8.76)

(8.77

Ir a.O 2, ia(Am +I 3ý A4 a j-E?+Am?~) (8.75)

Iz= + , - 4 tA (8.79)
Iti wrhwie oeai ha n h aoer laos *h is th3rain of 0 i & rd euo.

Ir #1 lA ýA )(.7
I2
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E 9.0 LINEAR THEORY OF INITIALLY SPHERICAL LAMINATES

For an initially spherical laminate, we chooe the usual spherical coordinates (r,#,O) which

mre related to the coordinates (01,02,03) according to the following relations

0'=# , 02=0 , 03=r (9.1)

I_ The choice of coordinate r for 0 direction is natural, since her similar to the cylindrical case,

-- the spherical laminates are piled up in the r direction. The metric tensor Gij and its conjugate G1j

and G = det(Gj) are given by the following relations

r. .. (111r2 0 0)3(G 11) = 0 r2sin*O j 0 (GAJ)= 1/i2Sin2* OJ (9.2)

S= det(Gj) = r' sin2 (9.3)

3 For the spherical coordinates defined in (9.1), the non-vanishing Christoffel symbols of first

and second kind are as followsI
1 Gii3

[11,3]=-- (-)3==-r
2 0-*3

3[12,2] = [21,2] 2 --- (&3) 2 sin 0' cos 0'=• r2 sin cos

[13,1=[31], 11 e3=r

D 2 
(9.4)

1 o = O3 sin2 01 in
I[23,2] = [32,2] -*3-rffi r

1 G22[22,1] - =- • p (.=sin 0COS=-r smncos*I 2 ae'

S[22,3] =n = -43 sin2O1 = -r sin2

I BASE
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1 311 1
U {122)= ( 2 2

11)=coteO =cot

I _3)=(13)=-_1

i (2)(2).. t_(9.5)

V3 r

(2 12) -sin 4 OIcos O :=-sin * cos

(2 32) = -4ýsin2O' = -r siin2

I From (9.2) and (2.14) we find the following expression for A

0 0 1 0 1

I 9.1 Relative Kinematic Measures

The relative kinematic measures yj were given by (2.118)1,", and since D.=Gc = 0-

I by (2.103) and (9.2) - and 8j: 5 j 13 -- by (4.22) - we can write

fj (u= - j + ujIi) (9.7)

I By (2.14) and (9.5) the non-vanishing components of t4 are

I ^ A2- 1 (9.8)

As a result we have the following expressions for Kj, given in (2.118)4.33 1

I •w=oo upla + BUiP
(9.9)

I BASE
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The components of directr displacement j by (4.22) aW (9.5) ae

r1 (9.10)
a3=U3.3

I Now we proceed to calculate the covariant components of yj in term of the covariant corm-

S lponents of the displacement vector u and its parial derivatives. From (9.7) we can write

3J -I (+i( 4+uO). (ik) Uk (9.11)

I Using (9.3) we get

Y'11 = U1. 1 +r 3

""712= (U.2 + UZI) - Cot U2

1 1I 713 = -(u 1.3 + u3.1)- ru

I 7,= u2+ sin ý cos ý u, +r sin2 u 3  (9.12)

1 1I = j- (u•3 + u3,1)- T

U b3 U3.3

I These results can be written in terms of the physical components by using (8.4) and (9.2). The

appropriate expressions after simplificiation are as follows

I

* BASE
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. 1aut +_3 2 ar ra
(9.13)

"r= si *o- r r

2 r* r rsin*

The relations for x4 and iq, given in (9.9), aft using (9.10) are reduced to

I IP k a) Uk + U ,,3p_- (C m p) U,,3 + a m p) (m 1k3 ) Uk

SKua 3 - ({3 k} a)U+ {3 k)a) {kJ3 Uj

In expanded form these relations are simplified toI
KII - U3 + U1,3 1 + TU3.3

I IC12 _ (U2.1-Ul, 2 ) + U1 3 2 - Cot U2 .3I .r
r

i C21 -Lr (Ul2u21)u + UZ3 - Cot U2 u3

(9.14)
I ic22 = 2 n u3 + U2.32 + sin * cos * ul,3 + r sin 2* u3.3

1 1

1 1

IAEU3 3  U2 3 + U2

r 

1I BASE
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Using (8.4) and (9.2), we can write the physical components of these relative kinematic meas-

i ures. The results after simplification are as follows

IL 2- [ r( u.+ iu+ ) ]

1 0-"% cot# aue
r 'j rsin~ * c-r r &r

ri2sin* W r euo 1

(9.15)

Is [=r-(ur(+ Cot 0UO+ 1 ±!N

I Ir2 ar sin* #d-

The equations for balance of mass are also obtained by substituting covariant derivatives of dis-

placement vector in spherical coordinates in the expressions (2.121) and (2.122). The simplified

results in terms of physical components of the displacement vector and its derivatives are as fol-

lows:

Sr sin r r ro-1

P = PO - 11 aue O'l _ cot~ 2O. r
r rsina or -r r

I

I BASE
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9.2 Linearized field equationsU
In order to derive these equations, it is sufficient to substitute from (9.3) and (9.5) in

U (2.123)-(2.125). Te results after simp*ficiatin we writen in tam of the physical components

I of various tensors by using (9.3) and are recorded below.

Balance of linear momentum:I
1 a 1 •O~ ?q cotdt 1 €3,+* b
- (sin - -oo C" IN + +p0 b#Irsin*a r sin # o- r r j2sin r

m�, •U>P 064 + z 8

+o '-BrW+T+co +W+ 1 __ pb
r r rsinO Te r r r2Sin. or

= PA(i + z 18) (9.17)

s-(sin + + +PobrIrsiný rsxný We r r2 sin

I
I
I
I
1

IOi BASEk
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Balance of direto momentum:I
1 a I as$$

r sin* r sin * d- r r rsin*

3- = p0(Z14" +i?5)

ry i rsein e (r9.19).Sin t

IP(z + AS) (9.18)

a i e se CF____
rsin* 0* rsr2-- (sinsm -.- - sin +~c

3 Balance of moment of momentum:

r

r

Here again as in cylindrical coordinates, the composite stress tensor 'r1 is not symmetric and the

I asymmetry is represented in equations (9.19).

I BASE
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I 93 Consttutive reatons

We follow exactly the same procedure as in Section 8.3. For quantities in spherical coordi-

I nates, by (9.6) and (9.3), we get

= 2 (9.20)

and 
by 

(9.8)

Using these results in (5.18) and (5.21) we obtain the following contravariant forms of the con-

3 stitutive relations in spherical coordinates. These constitutive equations are obviously written

for a purely mechanical theory.I
,['a_ =l0I O + 2 lajd + -1 l(2*a ] + [i** + -11(2"P+ 1- 1 ]3"4 (9.21)

TO = 0ON3k' + -2 P<.•] + +I l0+Ji(2x3cjr (9.22)Ir r
* 21 i2)aki J()a~l]) + [ 2)a .++i(3i)MW+ I 4* (9.23)
s'P = (1r) + r 2 r (2

3 S3 [i= W*3k + 2 i(2*3W]y + [1)a3* + _I 1i(]3WJ jp (9.24)

r r

I The covariant components of the relative kinematic measures yj and rit were calculated and are

I recorded in (9.12) and (9.14). The composite constitutive coefficients 1")M depend on the con-

stitution of the laminates. For the special case where the micro-structure is composed of n iso-

3 tropic layers with different elastic constants we have

3c/• = ),<o CP + p(o(G•oIP + G•IGq

* BASE
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O= 1,....•)

U where A(0 and p•0 are the Lame constants of each layer in the micro-structure. By (9.2)2 the

non-vanishing constitutive coefficients are

~C CI" = (Xk+2ýL)/r

C 122 = rSin2#

C2 122 = ()L+21,)/r 4 sin4+

C 3 = /r2sin2ý (9.25)

I C&333 = ;,, + 2ý.

3 C2323 = p"2sin 2#

I C1313 = ,r

m ~ C1212 -- WIsin2j

where the subscript (1) is dropped for brevity. Of course, the symmetries of the constitutive

m coefficients CJ& as expressed in (8.28) must be recalled when the expressions involving the con-

U stitutive coefficients are to be expanded. Substituting from (9.25) in (5.9) and using the results

in (9.21)-(9.24) we find the following constitutive relations for the physical components of the

3 composite stresses and composite couples. The summations in these relations extend over the

micro-structure from I = 1 to l = n.

I
3 2 2UI ,r.** =y#0 1:')q + 2ga)(m,• + -y Ami +-• m3r2

Y + 7( )ee+' ,),,) + 34Am, + - Am1 + --

I BASE
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I ~ ~~~+ O'* 'IP29jXý 2A4 •n + •-•'s A4n + "•" A4g)

I )4fm ?+' + (9.26)

I

I fr 2

,g y*9 1: (pI2L)AA + A4+ AI'

U (2A.!! Am? + - A4~ + -ý. A4f)(.7

I

I 2

I +1:e p ( + rI AM? n + :Ami2 + 3 &M4 ) (9.28)

Tr)r

+ BEp,,

2¥ * V I A!(Am ? + r ý Am +-ý2),"

2 2rA2E
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+ m ýAn ý n (9.32)

I~~~ rK.~,T~ITm 2r2

I ~+ 'V17 Z uX+~(m
+ (1c#K! A4+ 4 (9.34)

2 r 42r

=qoo~y 10) 1 XM AM1 +T'"2 2 m4

"IYf 0+(,4)(.Am1++ '!' AM?)

*+(Wf2+2 l3 3 r~~f 1 (9.34)

So Am?):(+gAfAm

+ S ,Yz~y ? +~Amj + -rAm? r2A)

+ wo U 3~12 LAm5

I BASE
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+* +( - m 3;jA4 + :AM,5

rr

I px-ý-Am? + (9.37)

I
3S=s.e (9.38)

Se Xu Am +3+ A4)

42

3+x + 4+244(- Ain?+ 2 q Ami4 + "• A4) (9.39)

I
2 3r

+.q ,M4) (9.40)

3 Using (5.33), (5.36) and (5.37), the composite mass density p. and the composite mass

moments poz' and poz2 which appear in the equations of motion are also calculated for an ini-

I daily spherical laminate

Ip=yp.(,Am 1+ I ApoQAML (9.41)

I BASE
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11i k :PA? ý :Pon (9.42)

*Pz= 1 " P2(Oam? + 2-- po(04 (9.43)

I 9.4 Energy equations and constitutive relations of linear tbernoeastldty for an initially

spherical composite

3 In the absence of beat supply or heat absorption, the energy equations (6.34)ta reduce to

the following forms when written in spherical coordinates as defined by (9.1)3
S(9.44)

r [-(sin # q,,)+ ] + h- q + po%0o1+#1%) = 0 (9.45)Irsin ý4
I where q, q9 and q. are the physical components of the heat flux vector for the composite lam-

inate; qj# and q19 are the physical components of the composite heat flux moment, and other

3 quantities have the same meaning as section 6. The constitutive relations for various composite

quantities in thermoelasticity can be written similar to what was done in section 8.4 for initially

cylindrical laminates. The mechanical parts of such constitutive equations were deived in sec-

I tion 9.3. Therefore in what follows we record only the thermal parts of these equations. The

complete constitutive relations in linear thermoelasticity are obtained by adding these distinct

U parts. Using (7.10), (9.8) and (9.20), the thermal part of the contravariant stress tensor "ij is

I T'J(thermal) = -. ,(J(O)IJ + -1 j(1)ij + + 1 J(2)0))
r r

I i tj(l)ij + I j(2A + Al(j(2)'o + 2. j3)} (9.46)

r r

*or
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•1.#.(j(O( + 3 jMil + _L j(2X)a - (J(lMil +2 j(2)ir + I• J(3 il) (9.47)3 r2 r r2 (.7

I
r r+2 r r+2

3 -=o(J-(o + .2 j(IX3) -_I(j(1)0 + 2. j(2) (9.49)

r r

I where the word (thermal) is dropped for brevity. Similarly the thermal parts of the composite

couple stress are written by using (7.12), (9.8) and (9.20)

I
3r r2r r2

S0 = -.to(j(1 + -2 ja*) _ (j- * + ._ jo(3 ) (9.51)Sr r

I The constitutive relations for composite entropy and its moments tim, the heat flux vector q and

its moment q, are also derived by substituting from (9.8) and (9.20) in (7.17), (7.22) and (7.24)

PolI(m) - yij(J(a)ij + .2 j(M+l)i) + iCi(J(m+l)iP + 2 j(m+2)ip)I
+ o(K(m) + 2. K(m"1)) + l(K(m4  + 2. K(m+2)) (m=0,1,2) (9.52)r r

- .,- - (L + )024p - (r, + )1 L (9.53)

q ( = "(L1)4 + -r L(2)4•0).0 (2)C4 + 2 L-)441p _ (,(i)W3 +3r L.(2)34 1  (9.54)

r r r

U where the thermal constitutive coefficients j(k)ij, K(k) and L(k)ij are given in (7.6)-(7.8) and also in

(7.30)-(7.32).

If the micro-structure is composed of isotropic spherical shells, the coefficients of thermal

I stress and thermal conductivity of each layer can be represented in terms of only one constant.
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Writing (8.59) and (8.60) in spherical coordinates and then substituting in (7.30) and (7.32) we

3 get the following results for the non-vanishing components of J*1 J and .

IP) I = _..L ý" (9.55)

II
P)22

k+= l rI 2s 2  P(1A' (9.56)

j(k)33 = _L_ OAmLk+l (9.57)I k+1

SL(k)II= I I k(LAmk+. (9.58)
k+1Ir

k+I r2'sin2 L (9.59)

L3k)33 = _" e M k(OAm)'+ 1  (9.60)kI
P(0's and k(m's are the coefficients of thermal stress and thermal conductivity of each layer and

I the summations are all extended over the micro-structure from 1 = 1 to I = n. Substituting from

I (9.55)-(9.57) in (9.47)-(9.49) we get the following expressions for the thermal parts of the physi-

cal components of the composite stress tensor.I
'90 =-ýo OXPAm, + -5- Am +3r

3i Am, + - AM) (9.61)

3• ~=%= 0(9.62)

0 (9.63)
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* w- 0 P~m,+ m Am?+ 2U, Am?3)
+U 2r V~

Am? -ýiAm? IZ mt)(9.64)

I •= = 0 (9.65)

rU 2 2 3r

m The thermal part of the composite stress moment is also similarly calculated by substituting from

i (9.55)-(9.56) in (9.50) and (9.51).

S40F'&j +_,7Amj + 'M

1P ý&, .. i~i. mi+ 2-ýAM14+ ' "A4) (9.67)

S O= S =0 (9.68)

SO Se = (9.69)

-- s et = 0 (9.70)

In order to find the appropriate forms of the constitutive equations for the entropy and its

moments, heat flux and its moments we substitute from (9.55)-(9.57) and (9.58)-(9.60) and also

(7.31) in (9.52)-(9.54) and obtain the following results

PoIl(o) = (Y•+e+Y,,) + r(Am?+ )

I BASE
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2 2 (971

UpAl=(Tl) gr=) PXkýjAn? + U 4

3f 22rf

+ 0 PO! 4 !ý m? +#1, pCA~3A + Am4) (9.72)

I ~Po'112) =(*Ye'f)Ipg,( AM?3 + _ AM1
4)

3 2r

+ (OtAM 13 + -. Am4) +0 (PC)i(-j Am + 24: Am?) (9.73)

I" kAmi +ýj AM12)

fm 2U
Ad -IkAM?- T+-__Am?) (9.74)

1r40 2 n 2r

IlAm + TAmi2

r i-j -aF 2 3ri+j-m? (9.75)

Iy r:k , m + E M (9.76)

I BASE
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1 4 (9 .7 7 )

I ,L~ rri

I
q0=-rsin W 2aj~m +. m3r

- * A ?+n A~ 4 ) (9 .7 8 )

I rsin* ~ 0  3  2r1

It should be recalled that in the above relations, 4j is the gradient of *o in the 03, i.e., r-direction.

IBASE
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I 10.0 ANALYSIS OF COMPOSITE LAMINATES FOR IN-PLANE LOADING

I 10.1 Introduction

I In the previous sections a complete themnomechanical theory of composite laminates was

developed. In this section the results of stress ac'ysis of composite laminates with baction-free

I edges are presented. Composite laminates with traction-free edges are known to develop inter-

laminar stress concentrations near the edge region. The problem of a finite width, symmetrically

laminated composite plate under uniform one-dimensional stretch has been studied by many

I authors, see Section 1. Pagano and Pipes (1970, 1973) showed that free edge effects on the

interlaminar stresses are important issues in determining the failure and the strength of such lam-

S inates. Their analytical work was based on linear elastic, generalized plane-strain formulation

and numerical solutions were obtained using a finite different procedure. Their study revealed

that certain interlaminar stresses rise in magnitude near the free-edge region. It was suggested

that a possible stress singularity exists at the free edge. A. S. D. Wang (1977) followed a finite

element scheme to investigate the same problem with emphasis placed on assessing in detail the

stress field closest to the ply interfaces and laminate's free edge, where stress singularity is

suspected. In this section the analysis of the same problem based on the theory developed in

previous sections is presented. A finite difference scheme was adopted for the solution of

governing partial differential equations. The objective of this numerical modeling study was to

examine the three-dimensional state of stress at the free edges of composite laminates and to

show that the proposed theory is in agreement with recorded experimental data.

10.2 Free Edge Boundary Value Problem

Consider a prismatic symmetric laminate ,hown in Figure 10.1.
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t

Ix
I o

22b

IZ

x ~Fig. 10. 1

The corresponding boundary-value problem for a uniform strain field in x-direction and

traction-free edges at y = ±b, and top and bottom surfaces (z = ±h) were derived based on the

linearized field equations (2.126) and (2.127) and constitutive relations (3.24) and (3.31). It was

assumed that representative elements are made of orthotropic plies. The stress-strain relations of

each ply in a coordinate system with major axis along fiber direction is:

i Of (10.1)

where

T2 -:'22 , 5' 1

Y1 --U1 !,1 4 -U2 ,3 + U3,2
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I •=U2.2 , 5'r=u.3+u3 .1

Y3nU3 Y6 ýU12+ U2.1

and C is a (6 x 6) matrix with elements related to the nine material constants of each ply, i.e.,

I extensional elastic moduli in three directions, shear moduli and Poisson ratios in coreponding

U directions as shown in [Whitney, 1989]. The constitutive relations for composite stress and

composite stres couple were derived by rotation of coordinate system in (10.1) to coincde with

I the direction of axial loading and the integration of these relations across the thickness of the

representative element as shown in equation (3.24) and (3.31). For small deformations of fiat

I composites, the constraint relation (4.20) was employed, i.e.,

68(e,, 3,t) = Cu (10.2)

I The final form of constitutive relations for the composite stress and the composite stress couple

I assumed the following presentation:

3 (10.3)

S=DT+FK

whereI
C = mC(I) + (1-m)D(2)

I
D 2 [ 2C(I) + (I --I)C(2) (10.4)

SF = L2 [m3C(I) + (I-im3)C(%

I Ic1=u1, 13 , C4=U3,23

I U2 =U2 , 2 3 , rs--U3,13
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'3 c3 =0 , W6 = u1.3 + U2.13

I In (10.4), C(I) and C(2) are corresponding C matrices for each constituent (or for each fiber direc-rn tion) present in the representative element and k2 is the thickness of representative element and

m is defined in (3.15). The linearized field equations (2.126) and (2.127) for a static loading and

I in the absence of body force are:

I •j•c+O, 3 =O

(10.5)

Elimination of the interlaminar stress vector ao from these equations resulted in:

i •Ji - saJa3 = 0 (10.6)

For an axially loaded strip, the stress and stress couple components were taken to be independent

of the axial direction. Consequently the general form of the displacement field was assumed as:

i uI = atx1 + U(x2,X3)

U2 = V(x2 ,x3 ) (10.7)

u3 = W(xlx 3)

Identifying direction 1 with x, direction 2 with y and direction 3 with z, the field equation (10.6)

reduces to the following set of partial differential equations:

I C•U1y + C55U= + CV~y + C45V,= + (C3+C 4s)Wy

i + (D45-D 36)Wya - F"U."y - F26VY." = 0

C26Uy + C45Uu + C2V.y + C44V. + (C23+C44)W.z

+ (D44-DD3)Wy= - FT6U."= - F"V~ny = 0 (10.8)
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I (C•+C0U + (C"+C)V•, + C4WO + C3W

3 + P36-D•)Uy + (D2--D)Vyu

3 - F4Wo = 0

g where CU, Dg and F are the components of C, D and F matrices. The domain and the boundary

conditions for these equations are shown in Figure 10.2.

II
IH

a -1

3 Figure 10.2

•U =O IU~y-O

3 ForI: {.Z =0 Foril: {WVy=O

[121 =0 (10= 03 For HI: 22 =0 ForWM: 2 =0

11:23=0 03=0

The following material properties were used for the analysis:

E1 = 48 x 104psi

ry = Ez = 5 x 104psi

UG = G y, = Gz = 2 x 104psi

hVxy = Vzy = Vxz = 0.21
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i A rectangular mesh of 41 x I I nodes was used for the finite difference discretization and a four

layer symmetry laminate under a uniform axial strain y1 - 0.01 was considered. Each layer itself

could be a collection of thin plies repeated in a consistent pattern. The presented results are for

I the case that all plies in the top and bottom layers are in the +0 direction and all plies in the two

middle layers are in the -O direction providing a [±0]. laminate. Complete stress and displace-

I ment results were obtained for various values of 0. These results are presented in Figures 10.3

through 10.13 and summarized in the following.

L 10.3 Results of Finite Difference Simulation

The purpose of this simulation was to examine the response of composite laminates under

I uniaxial extension and to show that the proposed theory reflects the complex three-dimensional

I response of free edge problem in composite laminates as recorded in the literature. Following

this verification, a systematic discretization technique in the context of finite element method

3 was developed and extensive analyses simulating various flat and curved composite laminates

under in-plane and out-of-plane loading were performed.I
In Figures 10.3 through 10.9 various components of stress tensor and interlaminar stress

M vector for [±30],,, [±4 5 ], and [±60],. laminates are plotted along the symmetry line of the lam-

I inate. Figure 10.3 is the axial stress which shows a decrease at the free edge. For [±30],, lay-up

this decrease is about 50% of stress at the centerline y - 0. Figure 10.4 is the composite shear

5 stresscxy which assumes its maximum for 0 = 300 and approaches zero at the free edge.

Figure 10.5 is the normal in-plane composite stress in the y direction, perpendicular to the

loading axis. The value of this stress component is negligible as compared to the axial stress,

I about 0.3% of the axial stress.

Figure 10.6 shows the interlaminar normal stress in z direction. The value of this stress

component assumes its maximum on the free-edge boundary.
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3 Figures 10.7 and 10.8 are the interlaminar shear stress components. The magnitude of the

interlaminar shear stress along the x-direction is in the same order as normal interaminar stress

and it increases with a high gradient as it approaches the free edge. The magnitude of the yz

component of shear stress at the centerline is negligible compared to other components.

Figure 10.10 shows the variation of interlaminal shear stress • for various values of fiber

direction 0.

Figures 10.11 through 10.13 present the various stress components across the thickness of

Ithe laminae. The shear stress z shows very small variation across the thickness. The normal

interlaminar stress assumes its maximum along the symmetry line and it approaches zero on the

top and bottom surfaces of the laminate. The normal stress T assumes its pick on the top and

bottom layers. Its value at the symmetry surface is not zero but it is considerably smaller than

those values at top and bottom surfaces.

A more detailed study of this problem is presented in Chapter 14 based on a finite element

I scheme. In particular it is discussed that even for a symmetric laminate, the problem of in-plane

loading of a finite width strip is a three-dimensional problem and should be modeled accord-

I ingly.

II
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I Composite Axial Stress (xx Component)
U00

• 1200.

F1000

I 600-

600-1 0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0d9

y/b

30 Degrees 45 Degrees.......60 Degrees

Figure 10.3
Extension Analysis - Axial Stress (•xy)

N.Composite Shear Stress (xy Component)

600

700-

31 ....... ...........0................................. ......... ......... .....

1OO ...00 ..................................................

I0

30 01 0.2 0.3 0.4 0.5 0.'6 0.-7 0.8 0.9
y/b

3-30 Degrees 4......5 Degrees ---60 Degrees

Figure 10.4I Extension Analysis - Shear Stress (T.)
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Composite Normal Stress (yy Component)

-2 - ...... ... ......- •
I"

I 
-25 

.

-33 
-315

-4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 04

y/b

3-30 Degrees ......45 Degrees --- 60 Degrees

Figure 10.5
I Extension Analysis - Normal Stress (b,)

U Interlaminar Normal Stress Z Direction

3 40-

30-

S(10 ,

S0 0.o1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
y/b

-30 Degrees ......45 Degrees. 60 Degrees

i Figure 10.6

Extension Analysis - Interlaminar Normal Stress (63)

1
II 
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Interlaminar Shear Strom xz Component

* 15-

6-

0 0:1 0.2 0.3 0.4 0ý5 0.6 0.7 0o8 0.9

3- 0 Degrees .......... 45 Degrees -- 60 Degrees

Figure 10.73 Extension Analysis - Interlaminar Shear (oI)

I Interlaminar Shear Stress yz Component
0.02-

,0 --........ ... ......

-= 0.02-

I-0.04-
-0.08

•' -.0.1 ,£ o0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
y/b

- 30 Degrees 45 Degrees ..... 60 Degrees

Figure 10.8
Extension Analysis - Interlaminar Shear (a2)
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Axiai Displacement at Composite Surface
0.0002.

0

I-0.0002-
S-0.0004

-0.0006.

-0.001.

-0.0012

-0.0014

-0.0016

.0.001 G
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1

yro

-30 Degrees ... 45 Degrees - 60 Degrees

Figure 10.9
Extension Analysis - U(y,z)

I Interlaminar Shear Stress Vs Theta
1.2

t 0.6

I 0.4.

I i 02"

0.2-

0 1'0o io io lo 10 ,o so 70 so -D

Fiber Orientation (Theta Degrees)

I Figure 10.10

Effect of Fiber Orientation
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Composite Shear Stress (xy Component)
300-

250-

* 200-

I3 : 150-

¶00-

50-

010 0.1 0.2 0.3 0.'4 0.5 0.6 0.7 0.s 0.'90
ytb

3 Symmetry Surface Mid Surface ..... Top Surface

Figure 10.11
Variation thmugh-the-thickness (;xy)

Composite Normal Stress (yy Component)
20

10-;

0 ...... . ......

1 0.1 0,2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 A

-Symmety Surface -- Mid Surface Top Surface

-Figure 10.12

Variation through-the-thickness (~,i)
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IComposite Normal Stress (zz Component)
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I ,o10
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1 S0
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I Figure 10.13

Variation through-the-thickness (•zz)
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11.0 WAVE MOTIONS IN LAMINATED FLAT COMPOSITES

Using relations (5.38)-(5.42), the linear equations of motion for a laminated composite with

initially flat plies, in the absence of body forces, can be written as

Q Ut +Ilj"U43 + 0j=pouj+0= '" Uo (11.1)

QI UM + QI uP + rj - QUM- I.U4,l = PoZ1U + PoZij3 (11.2)

Eliminating oj between these equations we get

iA)Uii.A + Q UkJP3 - 19kkWr~g - I&UkxW = p0Uj _ pOZ 2ij.33 (13

The equations (11.3) are the differential equations for the displacement vector u in elasto-

dynamical problems. These equations are now used to investigate the propagation of small

amplitude harmonic waves in a laminated composte. In the following special cases that we

examine, k is the wave number and c the phase velocity of the appropriate wave

(a) Longitudinal Waves in the xj-direction

For waves of this type the non-zero displacement component is u1 and we have

ul = A, exp[ik(xl-ct)] (11.4)

where A1 is the constant wave amplitude and assumed to be small. Differentiating (11.4) with

respect to x, and t we get

u =-kc2 u 1 , u1. 1=-k-U1  (11.5)

Substituting (11.5) in (11.3) we obtain

C2 f I(11.6)PO

For a composite whose micro-structure is composed of n isotropic layers, by (5.27) and (5.26),
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(5.26), we have

Substituting this result together with (5.38) in (11.6), the wave speed c for a longitudinal

wave would be

C _-1 , (11.8)

(b) Horizontally polarized shear waves in the xj-direction

For this type of waves the non-zero displacement component is u2 and we have

u2 = ALexp[ik(xl--ct] (11.9)

Substituting from (11.9) in (11.3) we get the following expression for the wave velocity

(:= l•I....2 (11.10)

PO

which for the special case of isotropic laminates reduces to

1: I(r)Amr
r~l (11.11)

'ml

(c) Vertically polarized shear waves in the x1-dreton

The non-zero displacement component for this wave is u3 and we have

BASE
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I U3 = A3 cxp[ik(x1-ct)] (11.12)

U The wave velocity for this case, similar to the above cases, is found and we obtain

I .=1813 (11.13)
PO

i Again for the special case of isotropic laminates we get

mI3 =1 (11.14)

I (d) Longitudinal waves in the x3-direction

I In this case the non-zero displacement component is u3 and we have

i u3 = B3 exp[ik(x3-ct)] (11.15)

These waves, unlike the above three cases, are dispersive and the wave speed depends on fre-

quency. The non-zero space and time derivatives of (11.13) which are relevant to (11.3) are

1 t3= -k 7C2u3  , U3,33= -k 7u 3  , U3,3 3 = k4OC2u3  (11.16)

Substituting from (11.16) in (11.3) we get

I4013 = p.c 2 + poz2c2k3 (11.17)

I If we introduce the wave frequency o) = ck in (11.17) we get

C o4303-POZ 2O) (11.18)

PO

For the case of a composite whose micro-structure is composed of n isotropic layers, this rela-

5 tdon reduces to
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I (jr)+2PO4~)&n - 3~ PoA

IM

(e) Transverse shear waves in the x3-direction

In this case we consider a transverse shear wave propagating normal to the laminates with

U its amplitude in the xj-direction. Consequently the only non-zero displcment component will

be ul and we have

ul = Blexp[ik(x 3-ct)] (11.20)

Here again, the phase velocity c is obtained similar to the case (d). The result is

C2 _ ffi h' ' (11.21)I PO

which shows the dependence of c on frequency (o. For the case of isotropic laminates (11.21)

I can be written as

~p(,rm - )2 n ~r)i

SC2: = r- (11.22)

It should be noted that the phase velocity of a shear wave propagading in the xy-direction with

3 amplitude in the xl-direction can be obtained by substituting I•3 in place of IBMj3 in the relation

(11.21). The general solution of a transverse shear wave propagating normal to the laminates is

I the sum of these solutions.

B
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U 12.0 WAVE MOTIONS IN CYLINDRICAL AND SPHERICAL LAMINATES

5 The results of sections 8 and 9 are used to derive equations of motion in terms of displace-

ment vector u for the cylindrical and spherical laminates. In each of the two cases the micro-

E structure is supposed to consist of n isotropic layers with different elastic constants. Using the

same notations as previous sections we define the constitutive coefficients )() and (r) according

I to the following relations:

5 ()= (r (12.1)
(r=l1,2...)

I where summations extend over the micro-structure from I = I to 1 = n. For future reference we

I further introduce the quantities p.() related to the densities of different layers according to the

following relations

I po(r)= 'po(OAm! (r= 1,2,...) (12.3)

I where summation again extends over the micro-structure from 1 = 1 to 1 = n. The quantities

I ;(r). 9(r) and po(r) defined in (12.1)-(12.3) are known a priori for each composite laminate.

I 12.1 Governing Equations for Cylindrical Laminates

Using the results of section 8, the equations of motion are derived for axial symmetry. In

other words we will study motions which are independent of the axial coordinate z and the angu-

S lar coordinate 0. With these specifications we will not have variations in 01 = 0 and 03 = z direc-

tions. From relations (8.12) and (8.13) we calculate the physical components of the relative

S kinematic measures:

Yooe= Ur ' ¥°z=0' /er=2- r r
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Sr(12.4)

r2= j r(nit) , r•=o, KA=o
3 K j ( 0 NOo

5 The equation of motion in terms of the physical components of the composite stress tensor and

the composite stress couple are derived using relations (8.15) and (8.16). These equations are

written in the absence of body force and body couple.
3 1 1 0

-L ±- = PoAk + Z 80)r r ar~

1 1laar

To + I - =po(,+ '4r)I12 &
(12.5)

I r so+ 1 (1 _,40 = po(ZlI + Z24)

r r
7 (;o - • = po(ZI r + z8r)r

NM + I I 1 OZi
r r

I The constitutive relations for various components of the composite stress tensor and the compo-

I site stress couple are derived using relations (8.29)-(8.43) along with definitions (12.1) and

(12.2)I
()B A SEL()+2(l)+ _ ()L(2)+2211+ 1r N• ")+2 •)}°
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I (1_.6(2))

0,o 2 + + . ),(12.7)

3r2 2 3r 42

I

1 .a))+ I ;12 ;L(2) +2_ ;Lo)r

2010)m = 2(•.0', + -L_ + Tr +z .') (12.9)

II " =(po,) + -L e.(l), 4., ( p(2, ) + -L eTre (1'€ 2.10)

I rz = 2(p(1) + --Le-))Yy (12.11)

I
C~r=(~()+2j~l) ± Q (2)+,2~ 1 .2~))

I .2r

I2L (I+ 2p1c) + " (12.12)

2r 2 3r W(1.2

ISe (IX(2) +2) + =-( + 2+.1 + -.L (X(4) +) )(21
2 3r 4r2

I

+L ;(2) + v2) + -L ;,(4))y

12 3r 4

+ -L (X(3) + 2 1.3)) + 1- (X(4) + 20..4 )) + -L (X(5) + 2±(5)))} (12.13)
3 2r 5r2
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2(1 p + L pp)yq + ( e) _L(12.14)
2 3r 3 4

(_ ) + _ (3% + (23) + _L (4)

2 3r + ,3 4r (12.15)

I sr= 2(•.- + A r % (12.16)

3tze = I-- Sze = sez-- 0 (12.17)

It should be mentioned that with the constitutive relations (12.6)-(12.17), the equations (8.17) for

I balance of the angular momentum are identically satisfied.

I The composite mass density p. and the composite mass moments pozt and poz2 are calcu-

I lated using relations (8.44)-(8.46) together with the definitions (12.3)

p0  1)= po+ p°(2)

POP 2r 111 13p)O
PO,+- P p)r (12.18)

p0 2  0 3r

1OZ _Ip)+_ po(4)1 213 4r

I As for the physical components of the director vector 8, using (4.22) in conjunction with (8.1),

I (8.2), (8.5) and (8.7) we find the following results

b a= ' 8z = ± - fr = (12.19)

I In order to substitute the constitutive relations (12.6)-(12.17) in the equations of motion, first we

eliminate the interlaminar stress components o9, a, and a, from the set of six equations (12.5).

The result would be the following set of three equations of motion. In these equations, as previ-
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ous similar equations, double dot denotes second partial derivative with respect to time tI
a 1I ?a 1

3(pOe,) - LPP -) ?(- + -L P)+ ")) . ii

3r 0~ 11p) 3 4r 1 .2

"+r = {p(._ -1- ppr p - (3) + -L p (4)) ii (12.20)

tf+r 0 3r or 3 0 4r 0  &r2

a-r+ -r (- e)+r &• e

{P°() m 7 • -L (3) pp) + -L' p°oob "L2}i•
0 3r 0 a 30 4r a1

In deriving these equations we have also used the results (12.18) and (12.19). Now the relevant

5 constitutive relations are substituted in equations (12.20). After straightforward calculations and

some simplifications we get the following results for the left-hand sides of these equations:

-a IIa
•" re + -r (Trg + Tr*) -r - -5T sq 2(1 + (2)P

+ 2(10 Lp2) i+ 42 + e•r., +1

2r ar r 3r2 2 3 ~

S+ -r%=2(jP) + Or "rz2 _3 _L(2), (2-I
I

Dr "r rr F 2(21

o11 11 (2 1 ) _"Iff + - - (T•r - Too) + r - se T -- 2 J( ) - r 2 r- ff "•( ) • rr rr r2

()L•(i) +2g.(l)+ I (X(2) + .(2)) + _2 ; 13 + L;(4)} YffI +2) + rj2) I4(r0

_(2g() + I (•) (2) + 2g_2) + 1 (0) + 2p(3)) + ((;L4) + 2p(4))yee
rr2 2r3
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sum_ ~+ 4_ •5+ 2^ u)},,5 Sr5

- - (12.24)

3r 3 0 4r &2

I It is interesting to note that these equations are uncoupled in terms of the displacement com-

ponents and represent three types of transent wave motions with axial symmetry. Equation

I (12.22) is the governing equation for rotary shear motions. Equation (12.23) represents axial

I shear waves, and finally equation (12.24) is the dynamical equation for radial waves. Since the

present theory is designed in such a way that the classical theory for a hs continuum

"I can be derived through a limiting procedure in which the thickness of the micro-structure

approaches zero, we expect to reconstruct the equations for wave motions with axial symmetry

_ in a homogeneous isotropic medium by letting E -> 0 in equations (12.22)-(12.24). Doing so,

the only non-vanishing constants in the coefficients of these equations are those with superscript

U (1) and we obtain the following results.

I Rotary shear waves:

-I a% u 0 1  ,uu=1 a2u 0-2 
(12.25)-r ar r r2 C,2ae

Axial shear waves:

1u allz 1nUI •2+ r - = Oj O•t2 (12.26)

02 raor at

5 Radial waves:

| a•,, Ur ,,, I a2,,,
- -+ _L (12.27)&2 r or r2 C 2 at2

I where
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+ + (V ) + + g(2)) + -L X3 2e) + -L (X(4) + 2^I+(()+r 3r2  4r2  r
--IP -O()2 g3) 3 (X(4) 20.)'+ (X(5>+^~

Ir 3r 4r2  5r3+{(2) + _Lr (;L(3 + ePO)) L;(+ ""2^ +"L(X5 + 2e()lce

2 3r + 2r2 25T'3-

Finally we substitute for the relative kinematic measures from (12.4) and obtain the following

equations for the components of the displacement vector u:

i ( 1 (31 (jt+ (-,) + e)U±!t - ,)ue
(po'_ - -Lpp pp + -L p,4 a2(2.2

r 3r 3 r &
=4(12.22)

2p1 r r + -r

(p°(,)- "•L p (3) p(3) + "p( (4)) (12.23)
I

II j1~±j 2) 1
3r 0 3 04r

17L(') + 2,(1) + -L (30) + 2()) + -L" (20)( + + -L (3X(4) + 4^(4 ))I2r 3r2 4

+ -L ((5) + 4(1)) a2-r

+ I (Q•5 - (+ 21)- - ;(3)- + (4)) - (2(5)
r r2 r3 5T4I
1-{L() + 2g(') + 1 (302) + 4g(2)) + -1 (7 211(3) + ) + 4) +2g

r 3r2 2r
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C 2 , -! (12.28)L PO PO

and we have deleted the superscript (1) for simplicity. These are the familiar equations for wave

motions with axial symmetry in cylindrical coordinates. Equations (12.25) and (12.27) are of

the same type and the space part of their solutions can be represented in terms of Hankel func-

tions of the first order. The space part of the general solution of equation (12.26) can be written

in terms of Hankel function of zero order. For each case considering a solution of the general

form F(r)ei" we get the following results:I
u(rt) = (C1H.'(-•- r) + C2 ,•11(2) r))e, (12.29)

CT CT

u,(r,t) = (C3 Hk)(-S- r) + C4H0
2) ( r),e' (12.30)ICT Or

SUr(rt) = (CqHf')('0) r) + C6A
2  _S- r))e'i (12.31)

CTr Cr

I where F-1 ) and 1I 2 ) (n = 0,1) are Hankel functions of first and second kind.

12.2 Investigating Wave Motions in Cylindrical LaminatesI
Returning back to the equations (12.22)-(12.24) we can again use the technique of separa-

S tion of variables to get the appropriate differential equations for the spatial part of the wave

motions.I
For the rotary shear motions if we letI

u9(r,t) = F(r)e'i (12.32)

, in the equation (12.22) we will obtain the following second order ordinary differential equation

I for F(r)

I BASE
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t1) - "" O)2p°O)4- 3r °2p(4 )- . jPO)F"(r) (12.33)

1 01)_L 2pp3 + I ())F,(r) + (a2po(1)- 0. I()(r)=o
r 3 0 r 0 r2I F)0

I This equation can be written in the following form:

F"(r) + -~r+-- F'(r) + F(r) =0 (12.34)
F "(r) + •2+1 r+ ' axr2+1r+y

I where

a (po4)_ o
I a=1L(I)-±o)2p(~3) 0 (3)=1 ' ~(2.5

3• - 4 3- (12.35)

I The origin r = 0 is an ordinary point for this differential equation; therefore, the solution for F(r)

is the neighborhood of r = 0 can be written in the form of an infinite power series of r. The

radius of convergence of this series depends on the frequency (0 of the wave motion and is

I approximately equal to ( l1/Ia) 1/2 for small frequencies. At the critical high frequency

cocr = (3 gt(1)/IP(3))1a, a = 0 and the equation (12.33) can be written as

3 '()~(4) -1 3gjr( 1)po

Lp°(3- r+PF"(r)- "(r)- r2 - ())F(r) =0 (12.36)

I Substituting F(r) = j aer in this equation, the coefficients an can be calculated. This is a con-
n=0

vergent seires and its radius of convergence is given below:

R=± ^P)
R= gOC)pO() (12.37)

For the axial shear waves if we substitute

Suf(r,t) = G(r)ei" (12.38)

BASE
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in the equation (12.23) we will get the following differential equation for G(r)

G"(r) + 3 G'(r) + G(r) = 0
(ý,(I_ .W 2p (3))r_ .Wo2poO4) (l2p(D_ 3"Wo2po()

3 0 4 03 4 0

(12.39)
The origin r = 0 is again an ordinary point for this differential equation and its solution in the

neighborhood of r = 0 can be written in the form of G(r)= i ar'. At the critical high fre-
n=0

quency (a." (3= /P( )/2 the equation (12.39) adopts the simpler form

4pool)
G"(r) - p r G(r) = 0 (12.40)

p0

This is the Airy differential equation and its solution can be represented in terms of the Airy

functions of the first and second kind

G(r) = CIAj(2 P•,--- r) + C2B1 (2 O r) (12.41)

Due to our initial assumption that the thickness of the micro-structure is very small and also by

definition (12.3) we conclude that the coefficient of r in the arguments of the Airy functions

(12.41), i.e., 2 I p-- -, is a large number. Therefore, we can employ the following asymptotic

representations for the Airy functions

22(
Ai(axr) -iu (• 4/ e

(12.42)

Bi(ax) = I
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For the radial waves we have the more involved equation (12.24) and if we let

u,(r,t) = H(r)e'i (12.43)

we will obtain the following differential equation for H(r)

Otl M2 C4 C4I N3 N P4(6+r + + 7 + -- 4+ )H(r) + r (o + 7+ 7+ -)H'(r)

T r2  r 3  r4  r2  r3 r4

+ -" (w•2P°012-3" w3P°(c)-( ,+r "+ - "+-+ + + -))H(r)=O0 (12.44)

where

o .=)L() + 21,()- . 2pp)

a,=3 X(2) + et(2_L 2p,(4)

2 420

a2 = 2L- + gt(3)) (12.45)

a 3 . X(4) + ,)

41 (X,(5) + 2p,(5))

N a =-_X.3) P3- ='-X(4) +

(12.46)

04= 5" ()L(5) + 2g.(5:) = -2a 45

y1= 3=(2) + 4p(2)

11

Y2 = (X(3) + 2e)
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(12.49)
5 X(4) + 20)4

2

P4 = ± ,(X(5 + )2 ) = 4C'4
5

Equation (12.44) can be written in the following form

H"(r) + - p(r)H'(r) - q(r)H(r) =0 (12.48)
r r

where

p(r) = f(r)/h(r) , q(r) = g(r)/h(r) (12.49)

are rational functions of r and

f(r) = 04 + 03r + p2r2 + ar4

g(r) = y4 + y3r + y¥r 2 + ylr 3 + (a,. + I c, 2ppO)r' - co2po(Vr6  (12.50)

h(r) = a4 + %zr + a2r2 + ajr3 + ot 4

Unlike the two previous cases the origin r = 0 is not an ordinary point for the differential equa-

tion of the radial waves, but it is instead a regular singular point. However, since the indicial

equation at r = 0 is

r2 + (p(O)-l)r - q(0) = 0 (12.51)

and by (12.49), (12.50), (12.46)3 and (12.47)4; p(O) = -2 and q(O) = 4 we always have an analyti-

cal solution at r - 0. The other independent solution has a singularity at the origin and can be

found by the familiar techniques of series solution. The nature of the general solution at origin,

as far as the analyticity and singularity of the solution is concerned, is independent of the fre-

quency of the radial waves.
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12.3 Governing Equations for Spherical LaminatesI
In this section we use the results of section 9 to derive the differential equation of wave

E motions with polar symmetry. With such an assumption the relevant field variables depend on r

and t only. Consequently, we do not have variations in ID = ý and 02 = 0 directions and the only

U non-vanishing component of the displacement vector u is u, which we will denote from now on

I by u. The physical components of the relative kinematic measures are calculated from (9.13)

and (9.15) and the results are recorded below

u Au
YTee= ' Yrr

I (12.52)

r. K#Kee ~ ( ru)

(12.53)

The constitutive relations for various components of the composite stress tensor and the compo-

site stress couple are derived using relations (9.26)-(9.40) together with definitions (12.1) and

I (12.2). We also substitute in these constitutive relations the results (12.52) and (12.53) for the

relative kinematic measures. After some simplifications we haveU
,ct,_ {2(•(])+1• (;)+ (2)+gi(2))+ 10 (;L()4.A10)) 1 (4+,4)u

+ r +• + " r

i + •(I)+ 1 . 2 (2)+(3())) .23) 1 0(4.).,i..4))) 0-

r (.()+2)+•' + r ( + L- •- (12.54)

too= (2(;•'(1.'")) + ± ; + 10 (;L(3)+0.(3)) + 1 (g(4)+tL(4))) U

r 3r2 r r

I
* BASE
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I~ (1 + J (4 )+j.P) + -1(±X+e)) + I (O(4)jt4^) -k (12.55)I

Ur 2r2 3r3I =2I() 5 k (2) +2 3)+2.X)~

r+(() + 2g±(1 + (2 ;)+ (12.56)

I
T To=r = Ite = & = ,O = 0 (12.57)

So (;X( 2)+g(2) + _L (X(3 )+g(3)) + 2 ((4)+.ý(4)) + r (, 5)+gý5N))
5P r

+ (2) + _L (5x(3)+2gO)) + - (7X( 4)+64( 4)) + _L (X(5)+( 5))) OA- (12.58)

I
I 3r

+ X + -L (5;3)+2t(3)) + -• (7(4)+64)) + - (;( 5)+#t(5))) Cl- (12.59)
2 3r 423 Vr

I SOO= S= s r= S=0 (12.60)

3 The equations for balance of linear momentum and director momentum are written in terms of

the relevant components of the composite stress tensor and the composite stress couple by using

I relations (9.17) and (9.18). In the absence of body force and body couple and recalling the

i assumption stated at the beginning of section 12.1 for polar symmetry we have

icot t (,to -,to) + 1 =0 1261rrs= (12.61)

r32 i acr = 0 (12.62)
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-r(c['+w) + rWT = P.(+ zi (12.63)

cot 00-390+ 1 04 = 0 (12.64)
r r2 sin•

r 1 ao=0 (12.65)

31 Tr - • = po(z 16 + Z2 2-) (12.66)

r r2 sin '

I In writing down these equations we have also taken notice of the fact that the only non-vanishing

component of the director vector is 83 = 8, = -L-. The equations (9.19) for balance of moment

Uof momentum are identically satisfied due to the constitutive relations (12.57) •nd (12.60). We

also notice from (12.54), (12.55), (12.58) and (12.59) that

Too = Tooe , So = See (12.67)

I Using these results together with the equations of motion (12.61), (12.62), (12.64) and (12.65),

we conclude that the first two components of interlaminar stress vector are zero, namely

I 0 = CO = 0 (12.68)

So we have only one equation of motion which should be derived by eliminating a, between

I equations (12.63) and (12.66). In order to write down this equation, first we derive appropriate

expressions for the composite mass density po and the composite mass moments poz' and poz2

by using relations (9.4l)-(9.43) and (12.3). The results are as follows:

1 - (1)+ 1 o(2)PO = PO' +r O

POZ'= •p•+ P (12.69)
2 B3r
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3 2r

Next we differentiate (12.66) with respect to r and substitute for -;, in (12.63) while making

use of (12.69). The resulting equation of motion in terms of the composite stress tensor and the

3 composite stress couple components are as follows:

r r 3r2

3r + _'•'o4 "(_L pp) + 1" po(4) (12.70)

I Now we substitute the constitutive relations (12.55), (12.56) and (12.59) in the equation of

E motion (12.70) to derive the displacement equation. After simplification we get the following

result

U +es u l ( ( 2 X ( 2 ) ) + I +I 
; 4 j +2 + _ L ( ) ( ) + g. 5 ) ) _ ..3r 324r3 5r4 r

+ ()2•t ( X(211(') + -L X(2) - I ( 1(3) + . go) -7.-L (7;(4)+60)

(2X~~2p~~)+2r r2  3 4r3

- ; (X5)+,.(5)) I Oh _

5? rr

{2(;.(2)+21.(il) + 8. (X(2 +i0)) + -L (361028g ± ((4)+()

r 3r21 r3

+6.ý (;L(5)+,L(5))} U3 + 5r4

2p -- pp)U-_ (_L p () + Ipý2(o)3r2 3r 0 2r2 a
] po(3) +Lp(4)) a2ýi

30 2rAarE
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I Again, as in the case of the cylindrical laminates, we expect to recover the classical theory of

-- wave motions with polar symmetry through a limiting procedure in which the thickness of the

micro-structure, E, approaches zero. Recalling (12.1)-(12.3) and suppressing the superscript (1)

Eat the limit, the equation (12.71) reduces to the following form:

+ 2 --"u2u CI• (12.72)

where

CL = X+2p (12.73)

This is the familar displacement equation of motion for waves with polar symmetry. In order to

find the general solution of this equation it is convenient to express the radial displacement u(r,t)

in terms of a potential function ¢(rt) through the relation

U = A(12.74)II
Now the second derivaqive of the product r4 with respect to r is

I 00 = r + 2 = r + 2u

3 If we rearrange the above result and differentiate again with respect to r, we get

I a au 2 . 2u 2ju 2u D [L _S( r+ - u) r or +r - rr •- r•r arr

I which reduces by (12.72) to

a 1 a2 1ro)] I a i a

-" r 'r )t = F2

I Therefore, we conclude that if the product r4 satisfies the following one-dimensional wave
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equation

ar TQ~) 1 2 (WrO) (12.75)UL
then u(rt) as defined by (12.74) will satisfy the displacement equation (12.72).I

The general solution of (12.75) isU
Irt)-- - f(t-r/CO) + 7 g(+rIC) (12.76)

where all the two terms represent waves diverging from the origin r = 0 and converging to r = 0,

I respectively.

I The displacement equation (12.71) for waves with polar symmetry in spherical laminates

i can be investigated by substituting a separated solution of the form

u(rt) = F(r)e"i (12.77)

The differential equation for the spatial part of the solution, F(r), can be written in the following

I form

F"(r) + I P(r)F'(r) + I Q(r)F(r) = 0 (12.78)
r 12

I where the rational functions P(r) and Q(r) are given by

I P(r) = NI(r)/D(r) , Q(r) = N2(r)/D(r) (12.79)

i and NI(r), N2(r) and D(r) are the following polynomials

NI(r) -2a.+r4 +Pr3 + Nr2 - a3r- a4

N2(r) = o)2p,()r6 - a'jr4 - 4alr3 - y 2r2 - y3 r- 3a 4  (12.80)
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D(r) =cLr4 + oa~r + cyl + a3 r +

I where

C16 = Lo) + 201) -. +c 2pe)

I
2I(3

(2) 4 ,ýo

CEI = 2(X(2) + 4~)) 2"Opo

(12.81)
(X .. (5 + ýL(5))

I 2 2

=2-2(;L() + 1 9 ())I
Y2 (3 DO) + 28e()

Y= 6;(4) + 0))

I The origin r =0 is a regular singular point for the equation (12.78). The indicial equation at this

point irrespective of the material constants is

r2- 2r - 3 = 0 (12.82)

It is obvious from (12.82) that we have always an analytical solution at r = 0 and the other

independent solution has a simple pole at this point. By (12.81), the radius of convergence of
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U ~the series solution depends on th frequenc of the wave mxo60i.
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